The mechanism of the interaction between the signaling molecule hydrogen sulfide (HS) and mitochondria and its related diseases is difficult to elusive. Thus it is urgent to develop effective methods and tools to visualize HS in mitochondria and in vivo. In this work, a robust mitochondrial-targeting NIR fluorescence "turn-on" fluorescent probe, NIR1, was reported, by adopting a Changsha-OH near-infrared (NIR) dye as the NIR fluorophore, a 2,4-dinitrophenyl (DNB) moiety as both the responsive site of the HS and the fluorescence quenching group of the NIR fluorophore, and an oxygen onium ion site as the mitochondria-targeting group, for the detection and analysis of HS in living Raw 264.7 cells and drug-induced inflammatory mice models. NIR1 exhibited a much smaller background fluorescence signal in lack of HS, whereas strong enhanced NIR fluorescence "turn-on" was detected in the presence of HS, these results showed a low detection limit (30.2 nM) for quantitative detection of HS in aqueous solutions with concentrations ranging from 0 to 1 μM HS. These characteristics were beneficial to direct detection and imaging analysis of HS in complicated biosystems. Therefore, first, NIR1 was applied for the NIR detection of mitochondrial HS in living inflammatory cells with satisfactory results. Finally, NIR1 was applied to detect HS in drug-induced inflammatory mice models with agreeable results, demonstrating that NIR1 as a molecular tool has an excellent practical application in the study of the interaction between inflammatory and HS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123574DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
8
detection imaging
8
cells drug-induced
8
nir fluorescence
8
fluorescence "turn-on"
8
nir fluorophore
8
drug-induced inflammatory
8
inflammatory mice
8
mice models
8
nir1 applied
8

Similar Publications

A Long Fluorescence Lifetime Probe for Labeling of Gram-Negative Bacteria.

Chem Biomed Imaging

January 2025

Precision Healthcare University Research Institute, Queen Mary University of London, Whitechapel, London E1 4NS, United Kingdom.

Bacterial resistance, primarily stemming from misdiagnosis, misuse, and overuse of antibacterial medications in humans and animals, is a pressing issue. To address this, we focused on developing a fluorescent probe for the detection of bacteria, with a unique feature-an exceptionally long fluorescence lifetime, to overcome autofluorescence limitations in biological samples. The polymyxin-based probe (ADOTA-PMX) selectively targets Gram-negative bacteria and used the red-emitting fluorophore azadioxatriangulenium (with a reported fluorescence lifetime of 19.

View Article and Find Full Text PDF

Sodium dodecyl sulfate (SDS) is widely used in numerous household products and pharmaceuticals due to its excellent water solubility, emulsification, foaming, and dispersing properties. However, the extensive use of SDS has made it a significant environmental pollutant, posing a great threat to aquatic ecosystems. Therefore, developing a rapid, efficient, and sensitive probe for detecting SDS in aqueous environments is crucial.

View Article and Find Full Text PDF

Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures.

Plant Mol Biol

January 2025

Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.

The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is one of the most harmful mycotoxins that poses great health threats to human and animals. Herein, a simple and sensitive magnetic beads-based fluorescent biosensor was successfully prepared for detection of DON in cereals. A stable double-stranded DNA (dsDNA, biotin-sDNA+FAM-cDNA/AP) was formed on the surface of streptavidin-coated magnetic beads (SMBs).

View Article and Find Full Text PDF

Theoretical insights on the double ESIPT mechanism and fluorescence properties of HBIo chromophore.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004 PR China. Electronic address:

2-{[3-(1H-benzoimidazol-2-yl)-2-hydroxy-5-methylbenzylidene] amino}-benzoic acid (HBIo) based on proton transfer can serve as the fluorescent probe for detecting heavy metal ions. The excited-state intramolecular proton transfer (ESIPT) reaction mechanism of the HBIo chromophore with an intramolecular asymmetric double hydrogen bond in different solvents are investigated. The reaction barrier of the ESIPT along hydrogen bond O1-H2···N3 is higher than that of ESIPT along O4-H5···N6, which indicates that the double ESIPT is a stepwise process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!