West Nile virus and climate change.

Adv Virus Res

The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States. Electronic address:

Published: October 2022

West Nile virus (WNV) is a mosquito-borne flavivirus with a global distribution that is maintained in an enzootic cycle between Culex species mosquitoes and avian hosts. Human infection, which occurs as a result of spillover from this cycle, is generally subclinical or results in a self-limiting febrile illness. Central nervous system infection occurs in a minority of infections and can lead to long-term neurological complications and, rarely, death. WNV is the most prevalent arthropod-borne virus in the United States. Climate change can influence several aspects of WNV transmission including the vector, amplifying host, and virus. Climate change is broadly predicted to increase WNV distribution and risk across the globe, yet there will likely be significant regional variability and limitations to this effect. Increases in temperature can accelerate mosquito and pathogen development, drive increases in vector competence for WNV, and also alter mosquito life history traits including longevity, blood feeding behavior and fecundity. Precipitation, humidity and drought also impact WNV transmissibility. Alteration in avian distribution, diversity and phenology resulting from climate variation add additional complexity to these relationships. Here, we review WNV epidemiology, transmission, disease and genetics in the context of laboratory studies, field investigations, and infectious disease models under climate change. We summarize how mosquito genetics, microbial interactions, host dynamics, viral strain, population size, land use and climate account for distinct relationships that drive WNV activity and discuss how these dynamic and evolving interactions could shape WNV transmission and disease under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.aivir.2022.08.002DOI Listing

Publication Analysis

Top Keywords

climate change
20
wnv
9
west nile
8
nile virus
8
virus climate
8
infection occurs
8
wnv transmission
8
transmission disease
8
climate
7
change
5

Similar Publications

Introduction: Dengue is one of the most widespread arboviruses in Latin America and is now affecting areas previously free of transmission. The COVID-19 pandemic and climatic variations appear to have affected the incidence of the disease, abundance of vectors and health programs related to dengue in some countries.

Objective: To analyze the epidemiology of dengue in Paltas, Ecuador (2016-2022), compare the periods before and during the COVID-19 pandemic, examine entomological reports and discuss the possible implications of the COVID-19 pandemic and climatic variations.

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

Turnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities. Turnover rates differ markedly among communities, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling.

View Article and Find Full Text PDF

Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.

View Article and Find Full Text PDF

With climate change projections indicating an increase in the frequency of extreme heat events and irregular rainfall patterns globally, the threat to global food security looms large. Terminal heat stress, which occurs during the critical reproductive stage, significantly limits lentil productivity. Therefore, there is an urgent need to improve lentil's resilience to heat stress to sustain production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!