Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanodiamonds (NDs) are zero-dimensional (0D) carbon-based nanoparticles with SP/SP-hybridized carbon atoms that have shown great potential in wastewater treatment areas due to their high surface area, chemical stability, and unique adsorption properties. They can efficiently remove a wide range of pollutants from water, including heavy metals, organic compounds, and dyes via various mechanisms such as electrostatic interactions, π-π stacking, and ion exchange. NDs can be functionalized following different surface chemistries, enabling tailored surface properties and enhanced pollutant adsorption capabilities. This review covers recent research on the application of nanodiamonds in wastewater treatment domain with a major emphasis on adsorption, photocatalytic degradation, and membrane separation, highlighting their promising performances, challenges, and future directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!