In this study, hybrid constructed wetlands (HCW) with functional substrates (vermiculite-tourmaline modified polyurethane) were constructed to investigate nitrogen removal efficiency and metabolic cooperation mechanisms for treating rural contaminated surface water with natural temperature fluctuations. The results show that within a natural temperature fluctuation range of 9-25 °C, the HCW achieved an average nitrate nitrogen removal efficiency of 98 % and a total nitrogen removal efficiency of 76 %, with effluent total nitrogen less than 5 mg/L. The rational secretion of extracellular polymeric substance and the analysis of microbial community structure revealed that functional substrate favors biofilm formation, increases the activity of Candidatus_Brocadia and Thauera, and enhances ammonia and nitrate reduction. These findings elucidate the ecological patterns exhibited by microorganisms during the process of functional substrate intensification. Overall, this study offers valuable guidance for constructing HCW to treat contaminated surface water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131741 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan.
Rare earth elements (REEs) are emerging contaminants rendering potential risks in soils to environmental quality and human health. The causation between their geochemical signatures and contamination levels with parent rocks and soil properties are critical for REEs risk assessments, which are urgently needed globally. Thus, this study aimed to elucidate cause-and-effect among hydrofluoric-acid-digested total and ethylenediaminetetraacetic acid extracted bioavailable soil REEs and their contamination degree evaluated by pollution indices in 268 soil layer (horizon) samples from 50 soil profiles derived from felsic, intermediate, mafic, ultramafic, and sedimentary rocks in Taiwan.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia. Electronic address:
Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China. Electronic address:
Organophosphorus nerve agents (OPNAs) are highly lethal chemical warfare agents (CWAs), which poses a serious threat to human health and safety. The accurate and rapid identification of OPNAs is crucial for medical diagnosis and effective treatment. However, distinguishing between various OPNAs and their analogues using on-site point-of-care testing (POCT) remains challenging.
View Article and Find Full Text PDFSci Total Environ
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia. Electronic address:
Agricultural activities are essential for sustaining the global population, yet they exert considerable pressure on the environment. A major challenge we face today is agricultural pollution, much of which is diffuse in nature, lacking a clear point of origin for chemical discharge. Modern agricultural practices, which often depend on substantial applications of fertilizers, pesticides, and irrigation water, are key contributors to this form of pollution.
View Article and Find Full Text PDFCornea
January 2025
Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
Purpose: To assess the impact of autologous serum (AS) tears at a 50% concentration on the ocular surface of patients with refractory dry eye disease (DED) because of Sjogren syndrome.
Methods: Twenty eyes of ten patients with severe immune-mediated DED were contralaterally randomized to receive either AS tears 50% or artificial tears between June 2021 and May 2023. Changes in tear stability, ocular surface staining, and in the morphology of the corneal sub-basal nerves were evaluated before treatment and at 1, 2, and 3 months after treatment using objective tests for DED and confocal microscopy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!