Changes of bacterial necromass and their roles in humus conversion during organic wastes composting from different sources.

Bioresour Technol

School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Victoria 3010, Australia; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Field Scientific Observation and Experiment Station of Ecological Agriculture in Miyun, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Published: January 2025

AI Article Synopsis

Article Abstract

This study compared the changes of bacterial necromass carbon (BNC) in composting of three distinct organic wastes [sewage sludge (SW), kitchen waste (KW), and pig manure (PM)] and their relationship with bacterial communities and humus formation. Results revealed that BNC content significantly differed across treatments, with KW exhibiting the highest level at 13 mg/g, followed by PM, where BNC changed between 8 % and 444 % of microbial biomass. Humification index and degree of polymerization indicated that PM had higher humification potential. Network analysis showed that key bacterial phyla contributing to BNC included Firmicutes in KW and Proteobacteria and Gemmatimonadota in SW and PM. Structural equation modeling demonstrated that BNC promoted the formation of humic acid in KW, while core bacteria facilitated the conversion of fulvic acid to humic acid in PM. These findings underscored the crucial role of bacterial necromass in enhancing humification and highlighted the distinct humification processes in composting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131740DOI Listing

Publication Analysis

Top Keywords

bacterial necromass
12
changes bacterial
8
organic wastes
8
humic acid
8
bnc
5
necromass roles
4
roles humus
4
humus conversion
4
conversion organic
4
wastes composting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!