Salinity stress induces ionic and osmotic imbalances in rice plants that in turn negatively affect the photosynthesis rate, resulting in growth retardation and yield penalty. Efforts have, therefore, been carried out to understand the mechanism of salt tolerance, however, the complexity of biological processes at proteome levels remains a major challenge. Here, we performed a comparative proteome and phosphoproteome profiling of microsome enriched fractions of salt-tolerant (cv. IR73; indica) and salt-susceptible (cv. Dongjin/DJ; japonica) rice varieties. This approach led to the identification of 5856 proteins, of which 473 and 484 proteins showed differential modulation between DJ and IR73 sample sets, respectively. The phosphoproteome analysis led to the identification of a total of 10,873 phosphopeptides of which 2929 and 3049 phosphopeptides showed significant differences in DJ and IR73 sample sets, respectively. The integration of proteome and phosphoproteome data showed activation of ABA and Ca signaling components exclusively in the salt-tolerant variety IR73 in response to salinity stress. Taken together, our results highlight the changes at proteome and phosphoproteome levels and provide a mechanistic understanding of salinity stress tolerance in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.202400251 | DOI Listing |
Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Dept. of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:
As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P).
View Article and Find Full Text PDFPlant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!