Since the diseases that cause bone defects are mostly inflammatory diseases, the current bone grafts are unable to effectively regulate osteoimmune activity, leading to the impaired osteogenesis and unfavorable bone regeneration. In this study, inspired by bone composition, biomimetic mesoporous bioactive glass nanoparticle (MBG)/bovine serum albumin (BSA) bone grafts are designed for inflammatory bone defects. Systematically, MBG/BSA bone grafts are evaluated for characterization, bioactivity, anti-inflammatory, antioxidant activity, and osteogenic activity. MBG/BSA bone grafts are proved to be biocompatible and can release bioactive ions including calcium and silicon in a sustained manner. Furthermore, MBG/BSA reprograms the macrophage phenotype toward anti-inflammation that is beneficial for bone regeneration. The antioxidative activity is also validated under inflammation and the mechanism may be via the interleukin-4 (IL-4)/Signal transducer and activator of transcription 6 (STAT6) pathway. The osteogenic differentiation and mineralization are also facilitated due to the improved immunoregulation of MBG/BSA. Overall, this work suggests that the MBG/BSA bone grafts with improved immunomodulatory properties are an ideal material for inflammatory bone regeneration application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202402610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!