Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gout predominantly stems from hyperuricemia, precipitating the accumulation of urate crystals and consequent joint inflammation, swelling, and pain, thereby compromising the quality of life and presenting a formidable medical dilemma. Although conventional treatments like allopurinol and febuxostat target uric acid reduction via xanthine oxidase (XO) inhibition, they often entail adverse effects, prompting the exploration of safer alternatives. Resveratrol, a polyphenolic compound abundant in fruits and vegetables, has emerged as a potential XO inhibitor. However, its precise inhibitory mechanisms remain poorly understood. This study aims to comprehensively investigate resveratrol's XO inhibition through mechanistic insights, molecular docking simulations, animal model experiments, and biochemical analysis, contributing valuable insights to the development of novel therapeutics for hyperuricemia and gout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.2690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!