Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Probiotics exert various effects on the body and provide different health benefits. Previous reports have demonstrated that the P8 protein (P8), isolated from , has anticancer properties. However, its efficacy in stem cells and normal cells has not been reported. In this study, the effect of P8 on cell proliferation and wound healing was evaluated, investigating its underlying mechanism. Based on scratch assay results, we demonstrated that P8 treatment significantly increases wound healing by activating the cell cycle and promoting stem cell stemness. Cellular mechanisms were further investigated by culturing stem cells in a medium containing Lactobacillus-derived P8 protein, revealing its promotion of cell proliferation and migration. Also, it is found that P8 enhances the expression of stemness markers, such as and , along with activation of the mitogen-activated protein kinase (MAPK) signaling and Hippo pathways. These results indicate that P8 can promote cell growth by increasing stem cell proliferation, migration, and stemness in a manner associated with MAPK and Hippo signaling, which could contribute to the increased wound healing after P8 treatment. Furthermore, P8 could promote wound healing in keratinocytes by activating the MAPK signaling pathways. These results suggest that P8 might be a promising candidate to enhance stem cell culture efficiency by activating cell proliferation, and enhance therapeutic effects in skin diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15283/ijsc24107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!