Bio-antifreezing is a green and highly effective strategy to inhibit ice nucleation. Bio-inspired antifreezing faces the severe challenges of significant toxicity and complex manufacturing procedures. Bio-inspired antifreezing natural deep eutectic solvent (Ba-NADES) could be an efficient and low or no-toxicity approach for the frozen food industry. Ba-NADES form a strong hydrogen bond network system under cold conditions, capably reducing the melting point of the system below the freezing point and effectively inhibiting ice growth. It has efficaciously alleviated freeze injury by Ba-NADES. The review highlights the current strategies of bio-inspired antifreezing, cold resistance behavior in organisms, and the existing applications of Ba-NADES. It updated information concerning their mechanisms for antifreezing. It emphasizes that the role of water on the antifreezing quality of NADES is worthy of further investigation for more extensive food applications. This work will provide a comprehensive overview of NADES antifreezing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.137808 | DOI Listing |
Food Chem
October 2023
Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China. Electronic address:
Macromol Rapid Commun
October 2023
State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
Drawing inspiration from Salicornia, a plant with the remarkable ability to thrive in harsh environments, a conductive hydrogel with high toughness and ultra-stability is reported. Specifically, the strategy of pre-cross-linking followed by secondary soaking in saturated salt solutions is introduced to prepare the PAAM-alginate conductive hydrogel with dual cross-linked dual network structure. It allows the alginate network to achieve complete cross-linking, fully leveraging the structural advantages of the PAAM-alginate conductive hydrogel.
View Article and Find Full Text PDFSmall
October 2022
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Superhydrophobic surfaces with the "lotus effect" have wide applications in daily life and industry, such as self-cleaning, anti-freezing, and anti-corrosion. However, it is difficult to reliably predict whether a designed superhydrophobic surface has the "lotus effect" by traditional theoretical models due to complex surface topographies. Here, a reliable machine learning (ML) model to accurately predict the "lotus effect" of solid surfaces by designing a set of descriptors about nano-scale roughness and micro-scale topographies in addition to the surface hydrophobic modification is demonstrated.
View Article and Find Full Text PDFFood Chem
March 2022
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
Nature-inspired natural deep eutectic solvents (NADESs) as anti-freezing agents including Pro:Glc (5:3), Pro:Glc (1:1), Pro:Sor (1:1), and Urea:Glc:CaCl (3:6:1) were prepared. Viscosity (η), conductivity (σ), activation energy of viscous flow (E) and conduction (E), transverse relaxation time (T), thermal behaviours, and anti-freezing capacities of the NADESs were investigated. A critical T of 24.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2017
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
Conductive hydrogels are a class of stretchable conductive materials that are important for various applications. However, water-based conductive hydrogels inevitably lose elasticity and conductivity at subzero temperatures, which severely limits their applications at low temperatures. Herein we report anti-freezing conductive organohydrogels by using an H O/ethylene glycol binary solvent as dispersion medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!