The development of the cerebral cortex during the fetal period is a complex yet well-coordinated process. MRI-based morphological brain network provides a powerful tool for describing this process at a network level. Due to the challenges of in-utero MRI acquisition and image processing, the fetal morphological brain network has not been established. In this study, utilizing high-resolution in-utero MRI data, we constructed an individual morphometric similarity network for each fetus based on multiple cortical features. The spatiotemporal development of morphological connections was described at the level of edge, node, and lobe, respectively. Based on graph theoretical method, the topology structure of fetal morphological network was characterized. Edge analysis demonstrated an increase of morphological dissimilarity between hemispheres with gestational age, especially for the parietal cortex. The limbic and parieto-occipital regions exhibited the most drastic changes of morphological connections at both the edge and node levels. Between- and within-lobe analysis illustrated that the limbic lobe became more similar to other lobes, while the parietal and occipital lobes became more dissimilar to other lobes. Graph theoretical analysis indicated that the small-world structure of the fetal morphological network appeared as early as 22 weeks and that the network topology exhibited an enhanced integration and reduced segregation during prenatal development. The findings obtained from the preterm-born neonates agreed well with those of the fetuses. In summary, this study fills a gap in prenatal morphological brain network research and provides a piece of important evidence for understanding the normal development of fetal brain connectome during the second-third trimester.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.120410DOI Listing

Publication Analysis

Top Keywords

morphological brain
12
brain network
12
fetal morphological
12
network
9
individual morphometric
8
morphometric similarity
8
similarity network
8
fetal brain
8
morphological
8
in-utero mri
8

Similar Publications

Background: Microbiota of the distal part of the intestine produces Urolithin A (Uro A) as a derivative of ellagitannins hydrolysis. Recently, the mitophagy, anti-inflammatory, and antioxidant properties of Uro A have focused more attention on its probable beneficial effects on neurodegenerative states. The purpose of this research was to study the impact of Uro A on the histopathology of the cerebellum in a rat model of streptozotocin-induced Alzheimer's disease.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, University of Fukui, Matsuoka, Fukui, Japan.

Background: One of the pathological hallmarks in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFTs) composed of highly phosphorylated tau protein. Clinical benefit of traditional Japanese Kampo Yokukansan for dementia patients, including AD was suggested. In this study, we investigated whether yokukansan participates in the degradation of phosphorylated tau and toxic oligomeric species of tau by using cell culture model of tauopathy, M1C cells.

View Article and Find Full Text PDF

Background: This study explores Alzheimer's prediction through brain MRI images, utilizing Convolutional Neural Networks (CNNs) and Lime interpretability. Based on an extensive ADNI MRI dataset, we demonstrate promising results in predicting Alzheimer's disease. Local Interpretable Model Agnostic Explanations (LIME) shed light on decision-making processes, enhancing transparency.

View Article and Find Full Text PDF

Circadian rhythm disruptions exacerbate inner ear damage in a murine endolymphatic hydrops model.

FASEB J

January 2025

Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.

Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear.

View Article and Find Full Text PDF

Previous studies revealed that tumor-associated macrophages/microglia (TAMs) promoted glioma invasiveness during tumor progression and after radiotherapy. However, the communication of TAMs with tumor cells remains unclear. This study aimed to examine the role of small extracellular vesicles (sEVs) derived from TAMs in TAMs-mediated brain tumor invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!