A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precise Control of Molecular Weight Characteristics of Charge-Shifting Poly(2-(N,N-Dimethylamino)Ethylacrylate) Synthesized by Reversible Addition-Fragmentation Chain Transfer Polymerization. | LitMetric

Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup. The CTA instability is demonstrated in the presence of the unprotonated tertiary amino group of the DMAEA monomer, which limits the control over the conversion and MW of the polymer. In contrast, the shielding of the amino groups by their protonation leads to polymerization with high conversions and excellent control over MWs of polymer up to 100 000 g mol. Hydrolytic degradation study at pH values ranging from 5 to 9 reveals that both basic and protonated PDMAEA undergo a pH-dependent hydrolysis. The proposed polymerization conditions provide a means of synthesizing PDMAEA with well-controlled characteristics, which are beneficial for controlling the complexation processes during the formation of various polyelectrolyte assemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202400640DOI Listing

Publication Analysis

Top Keywords

chain transfer
12
molecular weight
8
reversible addition-fragmentation
8
addition-fragmentation chain
8
transfer polymerization
8
polyelectrolyte assemblies
8
polymerization
5
precise control
4
control molecular
4
weight characteristics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!