3D-printed biomimetic bone scaffold loaded with lyophilized concentrated growth factors promotes bone defect repair by regulation the VEGFR2/PI3K/AKT signaling pathway.

Int J Biol Macromol

Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China. Electronic address:

Published: December 2024

This study investigates the effects of concentrated growth factors (CGF) and bone substitutes on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the development of a novel 3D-printed biomimetic bone scaffold. Based on the structure of cancellous bone, 3D-printed bionic bone with sustainable release of growth factors and Ca was prepared. Using BMSCs and EA.hy926 in co-culture with the bionic bone scaffold, experimental results demonstrate that this bionic structural design enhances cell proliferation and adhesion, and that the bionic bone possesses the ability to promote bone and vascular regeneration directly. Transcriptomics, western blot analysis, and flow cytometry are employed to investigate the effects of CGF and Ca on the signaling pathways of BMSCs. The study reports that vascular endothelial growth factor (VEGF) released by CGF activated VEGFR2 on BMSCs, leading to Ca influx and activation of the PI3K/AKT signaling pathway, thereby influencing osteogenesis. Animal experiments confirm the ability of the bionic bone to promote osteogenesis in vivo, and its unique degradation pattern accelerates the in vivo repair of bone defects. In conclusion, this study presents a novel biomimetic strategy and, for the first time, explores the potential mechanism by which VEGF and Ca regulate BMSCs differentiation through the VEGFR2/PI3K/AKT signaling pathway. These insights offer a new perspective for the development of innovative bone substitute materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136938DOI Listing

Publication Analysis

Top Keywords

bionic bone
16
bone
13
bone scaffold
12
growth factors
12
signaling pathway
12
3d-printed biomimetic
8
biomimetic bone
8
concentrated growth
8
vegfr2/pi3k/akt signaling
8
bmscs
5

Similar Publications

Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.

View Article and Find Full Text PDF

Electroactive membranes enhance in-situ alveolar ridge preservation via spatiotemporal electrical modulation of cell motility.

Biomaterials

December 2024

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. Electronic address:

Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process.

View Article and Find Full Text PDF

Inspired by the fundamental attribute of chirality in nature, chiral-engineered biomaterials now represent a groundbreaking frontier in biomedical fields. However, the integration of chirality within inorganic materials remains a critical challenge and developments of chirality-induced bionic bone implants are still in infancy. In this view, novel chiral hydroxyapatite (CHA) coated Ti alloys are successfully synthesized by a sophisticated chiral molecule-induced self-assembly method for the first time.

View Article and Find Full Text PDF

Bioactive ceramics have been used in bone tissue repair and regeneration. However, because of the complex in vivo osteogenesis process, long cycle, and difficulty of accurately tracking, the mechanism of interaction between materials and cells has yet to be fully understood, hindering its development. The ceramic microbridge microfluidic chip system may solve the problem and provide an in vitro method to simulate the microenvironment in vivo.

View Article and Find Full Text PDF

Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!