Functional and evolutionary analysis of key enzymes triacylglycerol lipase, glycogen hydrolases in the glycerol and glucose biosynthesis pathway and cellular chaperones for freeze-tolerance of the Rice stem borer, Chilo suppressalis.

Int J Biol Macromol

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China. Electronic address:

Published: December 2024

Freeze-tolerance is an important physiological trait for terrestrial environmental adaptation and intraspecific geographic-lineage diversification in ectothermic animals, yet there remains a lack of systematic studies on its underlying genetic mechanisms and evolution. To address this problem, we employed the widely distributed rice pest, the Chilo suppressalis, as a model to explore the genetic mechanisms and evolutionary history of freeze-tolerance. First, we systematically characterized its antifreeze mechanisms by performing functional validation of potential key genes in laboratory-reared lines. This revealed the functional roles of glycerol biosynthesis in freeze-tolerance, including the triacylglycerol-originated pathway via triacylglycerol lipase (Tgl) hydrolysis and the glycogen-originated pathway via α-amylase (Aa) and maltase (Ma) hydrolysis, as well as the roles of the cellular chaperones Hsc70 and Hsf1. Then, we investigated the evolution of freeze-tolerance by collecting representative geographical samples and performing population genetic analyses, which suggested differentiated strategies of cold adaptation in different geographic populations. Taken together, our findings demonstrate the functional basis of cold resistance in Chilo suppressalis and reveal the evolutionary history of freeze-tolerance in natural populations, providing insights into organismal freeze-tolerance and clues for pest control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136861DOI Listing

Publication Analysis

Top Keywords

chilo suppressalis
12
triacylglycerol lipase
8
cellular chaperones
8
genetic mechanisms
8
evolutionary history
8
history freeze-tolerance
8
freeze-tolerance
7
functional
4
functional evolutionary
4
evolutionary analysis
4

Similar Publications

Background: The rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), is a damaging pest of rice worldwide. Following the evolution of C. suppressalis resistance to diamide and abamectin insecticides, emamectin benzoate (EB) became a key insecticide for the control of this species in China.

View Article and Find Full Text PDF

Transcription factor E93 regulates vitellogenesis via the vitelline membrane protein 26Ab gene in Chilo Suppressalis.

Mol Biol Rep

December 2024

Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.

Background: Ecdysone-induced protein 93 F (E93, also known as Eip93F) plays a crucial role in the reproductive process of numerous insects. This study aims to delineate the function of E93 in Chilo suppressalis and elucidated the regulatory mechanism by which E93 influences the reproduction of C. suppressalis METHODS AND RESULTS: The results of the bioinformatics analysis indicate that C.

View Article and Find Full Text PDF

Flavin-Dependent Monooxgenase Confers Resistance to Chlorantraniliprole and Spinetoram in the Rice Stem Borer Walker (Lepidoptera: Crambidae).

J Agric Food Chem

December 2024

College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China.

Article Synopsis
  • * The study identified five FMO genes and found that specific genes (FMO3B and FMO3C) were overexpressed in field populations resistant to treatments like chlorantraniliprole and spinetoram, but not to all insecticides.
  • * Molecular studies confirmed that these FMOs directly bind to certain insecticides, contributing to metabolic resistance, highlighting their importance in developing effective pest management strategies.
View Article and Find Full Text PDF

The Evolution and Mechanisms of Multiple-Insecticide Resistance in Rice Stem Borer, Walker (Lepidoptera: Crambidae).

J Agric Food Chem

November 2024

College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Weigang Road 1, Nanjing, Jiangsu 210095, China.

Article Synopsis
  • The rice stem borer is developing resistance to key insecticides, posing a challenge for its control and management in agriculture.
  • Research on 126 populations from China showed moderate to high resistance to four main insecticides, revealing genetic mutations linked to this resistance.
  • Understanding these resistance mechanisms, including both target-site mutations and nontarget mechanisms like enzyme overexpression, can aid in developing effective and sustainable pest management strategies.
View Article and Find Full Text PDF

High temperature-induced Cscaspase-8 disrupts the developmental relationship between Chilo suppressalis and its endoparasitoid.

Int J Biol Macromol

December 2024

College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China. Electronic address:

Article Synopsis
  • Host hemolymph serves as a crucial environment for endoparasitoid growth, particularly for Chilo suppressalis larvae, which respond to parasitism by generating many granulocytes.
  • High temperatures hinder these granulocytes' functions, causing apoptosis and affecting other immune responses by activating apoptotic pathways in cells like prohemocytes.
  • The study identifies Cscaspase-8 in C. suppressalis, showing that while its expression increases under stress from heat and parasitism, silencing this gene does not significantly impact larval survival, although it causes developmental delays in Cotesia chilonis larvae, enhancing our understanding of insect apoptosis regulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!