Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry. It critically evaluates the strengths and weaknesses of these different delivery approaches while identifying potential directions for future development. The goal is to equip researchers with effective strategies to optimize delivery methods, ultimately facilitating the implementation and progress of gene editing technologies in animal husbandry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.149044 | DOI Listing |
Haemophilia
January 2025
Medicine and Pathology, Georgetown University, Washington, District of Columbia, USA.
Introduction: Gene editing therapies offer the possibility of substantial improvement in treatment and quality of life for people with haemophilia (PWH) in a landscape of dynamic therapeutic advancement. Developing a common and understandable language to discuss gene editing will be essential to ensure these treatments can be deployed in a safe and effective manner with fully informed and shared decision-making between healthcare professionals (HCPs) and PWH. A lexicon explaining and clarifying key concepts is one potential tool to address these aims.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
The flexibility and programmability of CRISPR-Cas technology have made it one of the most popular tools for biomarker diagnostics and gene regulation. Especially, the CRISPR-Cas12 system has shown exceptional clinical diagnosis and gene editing capabilities. Here, we discovered that although the top loop of the 5' handle of guide RNA can undergo central splitting, deactivating CRISPR-Cas12a, the segments can dramatically restore CRISPR function through nucleic acid self-assembly or interactions with small molecules and aptamers.
View Article and Find Full Text PDFUnlabelled: The impact of cancer driving mutations in regulating immunosurveillance throughout tumor development remains poorly understood. To better understand the contribution of tumor genotype to immunosurveillance, we generated and validated lentiviral vectors that create an epi-allelic series of increasingly immunogenic neoantigens. This vector system is compatible with autochthonous Cre-regulated cancer models, CRISPR/Cas9-mediated somatic genome editing, and tumor barcoding.
View Article and Find Full Text PDFMultiplexed assays of variant effect (MAVEs) perform simultaneous characterization of many variants. Prime editing has been recently adopted for introducing many variants in their native genomic contexts. However, robust protocols and standards are limited, preventing widespread uptake.
View Article and Find Full Text PDFAnim Reprod
January 2025
Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo - USP, Pirassununga, SP, Brasil.
Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!