A peptide derived from the amino terminus of leptin improves glucose metabolism and energy homeostasis in myotubes and db/db mice.

J Biol Chem

Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Published: October 2024

Leptin is an adipokine, which plays key roles in regulation of glucose metabolism and energy homeostasis. Therefore, identification of a short peptide from leptin which improves glucose-metabolism and energy-homeostasis could be of significant therapeutic importance. Mutational studies demonstrated that N-terminal of human leptin hormone is crucial for activation of leptin-receptor while its C-terminal seems to have lesser effects in it. Thus, for finding a metabolically active peptide and complimenting the mutational studies on leptin, we have identified a 17-mer (leptin-1) and a 16-mer (leptin-2) segment from its N-terminal and C-terminal, respectively. Consistent with the mutational studies, leptin-1 improved glucose-metabolism by increasing glucose-uptake, GLUT4 expression and its translocation to the plasma membrane in L6-myotubes, while leptin-2 was mostly inactive. Leptin-1-induced glucose-uptake is mediated through activation of AMPK, PI3K, and AKT proteins since inhibitors of these proteins inhibited the event. Leptin-1 activated leptin-receptor immediate downstream target protein, JAK2 reflecting its possible interaction with leptin-receptor while leptin-2 was less active. Furthermore, leptin-1 increased mitochondrial-biogenesis and ATP-production, and increased expression of PGC1α, NRF1, and Tfam proteins, that are important regulators of mitochondrial biogenesis. The results suggested that leptin-1 improved energy-homeostasis in L6-myotubes, whereas, leptin-2 showed much lesser effects. In diabetic, db/db mice, leptin-1 significantly decreased blood glucose level and improved glucose-tolerance. Leptin-1 also increased serum adiponectin and decreased serum TNF-α and IL-6 level signifying the improvement in insulin-sensitivity and decrease in insulin-resistance, respectively in db/db mice. Overall, the results show the identification of a short peptide from the N-terminal of human leptin hormone which significantly improves glucose-metabolism and energy-homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625344PMC
http://dx.doi.org/10.1016/j.jbc.2024.107919DOI Listing

Publication Analysis

Top Keywords

db/db mice
12
mutational studies
12
leptin improves
8
glucose metabolism
8
metabolism energy
8
energy homeostasis
8
identification short
8
short peptide
8
improves glucose-metabolism
8
glucose-metabolism energy-homeostasis
8

Similar Publications

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF

Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.

Chin J Integr Med

January 2025

Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Objective: To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).

Methods: The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.

View Article and Find Full Text PDF

Pathophysiological characterization of the ApoE mouse: A model of diabetes and atherosclerosis.

Methods

January 2025

Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain. Electronic address:

The high prevalence of type 2 diabetes and atherosclerosis makes essential the availability of in vivo experimental models that accurately replicate the pathophysiological mechanisms of these diseases. Apolipoprotein E knockout mice (ApoE) have been used in atherosclerosis studies, and the db/db mice show hyperphagia and obesity. Mice harbouring both alterations (i.

View Article and Find Full Text PDF

Adipose ZFP36 protects against diet-induced obesity and insulin resistance.

Metabolism

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Aims: Obesity, as a worldwide healthcare problem, has become more prevalent. ZFP36 is a well-known RNA-binding protein and involved in the posttranscriptional regulation of many physiological processes. Whether the adipose ZFP36 plays a role in obesity and insulin resistance remains unclear.

View Article and Find Full Text PDF

Changes in the lipid and carbohydrate metabolism, adipokines, and growth factors during the development of metabolic disorders were studied in three mouse models: C57BL/6 (alimentary obesity), db/db (leptin-resistant obesity), and NOD (diabetes mellitus) lines. In the group of alimentary obesity, moderate fatty infiltration of the liver and hypertrophy of the adipose tissue, hyperglycemia, and increased concentrations of adiponectin, transforming growth factor β1 (TGF-β1), leptin, and cholesterol were detected. In the group of leptin-resistant obesity, multiple pathological changes in tissues, severe hyperglycemia and hyperleptinemia, hyperinsulinemia, and reduced concentrations of triglycerides, adiponectin, myostatin, and TGF-β1 were detected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!