Nanostructured Photonics Probes: A Transformative Approach in Neurotherapeutics and Brain Circuitry.

Neuroscience

UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia. Electronic address:

Published: December 2024

Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2024.10.046DOI Listing

Publication Analysis

Top Keywords

nanostructured photonic
8
neural probes
8
nanostructured
5
nanostructured photonics
4
probes
4
photonics probes
4
probes transformative
4
transformative approach
4
approach neurotherapeutics
4
neurotherapeutics brain
4

Similar Publications

Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.

Photochem Photobiol Sci

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.

View Article and Find Full Text PDF

Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.

The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.

View Article and Find Full Text PDF

Recent Developments in Photofunctional Nanomaterials and Nanostructures for Emitting, Manipulating, and Harvesting Light.

Nanomaterials (Basel)

December 2024

Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.

Photofunctional nanomaterials and nanostructures that can emit, manipulate, convert, and utilize photons in diverse forms have profound meanings, from fundamental understandings to applications [...

View Article and Find Full Text PDF

Visualization and Estimation of 0D to 1D Nanostructure Size by Photoluminescence.

Nanomaterials (Basel)

December 2024

Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania.

We elaborate a method for determining the 0D-1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the calculation of their top dimensions of 2.0 nm.

View Article and Find Full Text PDF

Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS transferred onto a flexible metallic nanotip array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!