Neural net analysis of NMR spectra from strongly-coupled spin systems.

J Magn Reson

Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, United States.

Published: November 2024

Extracting parameters such as chemical shifts and coupling constants from proton NMR spectra is often a first step in using spectra for compound identification and structure determination. This can become challenging when scalar couplings between protons are comparable in size to chemical shift differences (strongly coupled), as is often the case with low-field (bench top) spectrometers. Here we explore the potential utility of AI methods, in particular neural networks, for extracting parameters from low-field spectra. Rather than seeking large experimental sets of spectra for training a network, we chose quantum mechanical simulation of sets, something that is possible with modern software packages and computer resources. We show that application of a network trained on 2-D J-resolved spectra and applied to a spectrum of iduronic acid, shows some promise, but also meets with some obstacles. We suggest that these may be overcome with improved pulse sequences and more extensive simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573630PMC
http://dx.doi.org/10.1016/j.jmr.2024.107792DOI Listing

Publication Analysis

Top Keywords

nmr spectra
8
extracting parameters
8
spectra
6
neural net
4
net analysis
4
analysis nmr
4
spectra strongly-coupled
4
strongly-coupled spin
4
spin systems
4
systems extracting
4

Similar Publications

This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.

View Article and Find Full Text PDF

The synthetic availability and wide range of biological activity of hydrazides and hydrazones make them attractive subjects for investigation. In this study, we focused on synthesis of 2-methyl-5-nitro-6-phenylnicotinohydrazide-based hydrazones derived from the corresponding substituted aldehydes. The structure of the obtained compounds was studied using NMR spectroscopy and DFT calculations.

View Article and Find Full Text PDF

The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts.

Molecules

December 2024

Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.

Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.

View Article and Find Full Text PDF

The current investigation intended to assess the controlled delivery of 7-sulfonamide-2-(4-methylphenyl) imidazo[2,1-b] [1, 3] benzothiazole an anticancer agent (ACA) by tamarind seed gum-based hydrogel; for its potential activity against hepatocellular carcinoma. The FTIR spectra, SEM, C NMR, PXRD, and TGA analyses evidenced the successful loading of ACA into the hydrogel system. The rheological testing conveyed the increase in the elastic nature of ACA-loaded hydrogel helping in an effective release.

View Article and Find Full Text PDF

Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!