Single-stranded DNA-binding protein (SSB) is essential to DNA replication, DNA repair, and homologous genetic recombination. Our previous study on the crystal structure of a C-terminally truncated SSB from Helicobacter pylori, HpSSBc, in complex with single-stranded DNA (ssDNA) suggests that several aromatic residues, including Phe37, Phe50, Phe56, and Trp84, were involved in ssDNA binding. To investigate the importance of these aromatic residues, the binding activity of four site-directed HpSSB mutants, including F37A HpSSB, F50A HpSSB, F56A HpSSB, and W84A HpSSB, was compared to that of wild-type HpSSB and HpSSBc by means of electrophoresis mobility shift assay (EMSA), tryptophan quenching fluorescence titration, and surface plasmon resonance (SPR). Molecular docking and molecular dynamic (MD) simulation of a F37A and a quadruple mutation model of HpSSBc support that the ssDNA-HpSSBc complex was destabilized when either one or four of the aromatic residues were mutated. The findings of this study suggest that mutation of the phenylalanine and tryptophan residues within the oligonucleotide-binding domain significantly diminished the ssDNA binding capability of HpSSB, highlighting the crucial role these aromatic residues play in the binding of ssDNA by HpSSB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2024.09.003DOI Listing

Publication Analysis

Top Keywords

aromatic residues
20
single-stranded dna
8
helicobacter pylori
8
ssdna binding
8
hpssb
8
binding
6
aromatic
5
residues
5
residues oligonucleotide
4
oligonucleotide binding
4

Similar Publications

Selective Protein (Post-)modifications through Dynamic Covalent Chemistry: Self-activated SAr Reactions.

J Am Chem Soc

January 2025

Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France.

SAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species.

View Article and Find Full Text PDF

Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied .

View Article and Find Full Text PDF

Self-Assembly of Homo Phenylalanine Oligopeptides: Role of Oligopeptide Chain Length.

Langmuir

January 2025

Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.

The self-assembly of phenylalanine (F)-based peptides is a critical area of research with potential implications for the development of advanced biomaterials and technologies. Previous studies indicate that homo-oligopeptides with F-X residues (X = 1 to 6) can self-assemble into diverse nano-microstructures, but the role of oligopeptide chain length on this process remains unclear. This review investigates the role of F-X chain length on self-assembly processes and morphologies, considering the effect of incubation conditions and the capping group at the N and/or C terminals.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetes is a significant global health issue that involves high healthcare costs and complex treatments, leading to the search for new medication options due to the side effects of current therapies.
  • Glucokinase (GK) plays a crucial role in regulating blood sugar levels and has unique properties that make it a good target for type-2 diabetes treatment; glucokinase activators (GKAs) can enhance GK activity, but safety concerns persist with existing options.
  • A study developed a new type of GKA using peptide-based compounds with unique amino acids, discovering three promising peptides that increase GK activity significantly; machine learning techniques were also employed to predict their effectiveness.
View Article and Find Full Text PDF

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!