Heterogeneity of the human immune response to malaria infection and vaccination driven by latent cytomegalovirus infection.

EBioMedicine

Burnet Institute, Melbourne, Australia; School of Environmental Sciences, Griffith University, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia; Department of Infectious Diseases, University of Melbourne, Australia; Department of Microbiology and School of Translational Medicine, Monash University, Australia. Electronic address:

Published: November 2024

AI Article Synopsis

  • Human immune responses to infections like malaria are influenced by genetics, environment, and past infections, but the role of latent cytomegalovirus (CMV) in malaria immunity is not well understood.
  • Research examined how CMV affects immune responses to malaria using samples from prior clinical trials, revealing that CMV seropositivity leads to lower production of specific antibodies after malaria infection and vaccination, and alters Tfh cell responses.
  • The study indicates that individuals with CMV are less likely to develop protective antibodies against malaria, highlighting the need for further research in malaria-endemic areas to understand how CMV might affect immunity in children.

Article Abstract

Background: Human immune responses to infection and vaccination are heterogenous, driven by multiple factors including genetics, environmental exposures and personal infection histories. For malaria caused by Plasmodium falciparum parasites, host factors that impact on humoral immunity are poorly understood.

Methods: We investigated the role of latent cytomegalovirus (CMV) on the host immune response to malaria using samples obtained from individuals in previously conducted Phase 1 trials of blood stage P. falciparum Controlled Human Malaria Infection (CHMI) and in a MSP1 vaccine clinical trial. Induced antibody and functions of antibodies, as well as CD4 T cell responses were quantified.

Findings: CMV seropositivity was associated with reduced induction of parasite specific antibodies following malaria infection and vaccination. During infection, reduced antibody induction was associated with modifications to the T -follicular helper (Tfh) cell compartment. CMV seropositivity was associated with a skew towards Tfh1 cell subsets before and after malaria infection, and reduced activation of Tfh2 cells. Protective Tfh2 cell activation was only associated with antibody development in individuals who were CMV seronegative, and a higher proportion of Tfh1 cells was associated with lower antibody development in individuals who were CMV seropositive. During MSP1 vaccination, reduced antibody induction in individuals who were CMV seropositive was associated with CD4 T cell expression of terminal differentiation marker CD57.

Interpretation: These findings suggest that CMV seropositivity may be negatively associated with malaria antibody development. Further studies in larger cohorts, particularly in malaria endemic regions are required to investigate whether CMV infection may modify immunity to malaria gained during infection or vaccination in children.

Funding: Work was funded by National Health and Medical Research Council of Australia, CSL Australia and Snow Medical Foundation. Funders had no role in data generation, writing of manuscript of decision to submit for publication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576503PMC
http://dx.doi.org/10.1016/j.ebiom.2024.105419DOI Listing

Publication Analysis

Top Keywords

malaria infection
16
infection vaccination
16
cmv seropositivity
12
individuals cmv
12
infection
10
malaria
9
human immune
8
immune response
8
response malaria
8
latent cytomegalovirus
8

Similar Publications

Microsatellites, or simple sequence repeats (SSRs), are short tandemly repeated DNA sequences widely dispersed throughout the genome. Their high variability, co-dominant inheritance, and ease of detection make them valuable genetic markers, frequently used to study genetic diversity, population structure, and evolutionary processes. In the context of malaria research, particularly with Plasmodium falciparum (P.

View Article and Find Full Text PDF

Ultrastructural expansion microscopy (U-ExM) visualization of malaria parasite dense granules using RESA as a representative marker protein.

Parasitol Int

December 2024

Divisions of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan. Electronic address:

Dense granules (DG) are understudied apical organelles in merozoites, the malaria parasite stage that invades erythrocytes. Only six proteins have been identified which localize to DGs, despite that DG proteins play crucial roles in multiple steps of intraerythrocytic parasite development. To develop a tool for investigating DG structure and function, this study applied ultrastructural expansion microscopy (U-ExM) to visualize the ring-infected erythrocyte surface antigen (RESA) in Plasmodium falciparum merozoites.

View Article and Find Full Text PDF

Secreted extracellular heat shock protein gp96 and inflammatory cytokines are markers of severe malaria outcome.

Cell Stress Chaperones

December 2024

Unite postulante de Biologie Genetique, Genomique et Bio-informatique (G2B), Departement de Biologie animale, Faculté des Sciences et Techniques, Universite Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, BP: 5005, Dakar, Senegal. Electronic address:

Malaria caused by Plasmodium spp., is a major public health issue in sub-Saharan Africa. The fight against malaria has stalled due to increasing resistance to treatments and insecticides.

View Article and Find Full Text PDF

Introduction: The genetic complexity of Plasmodium falciparum is contributory to the emergence of drug resistant-parasites. Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) in malaria endemic settings is recommended by WHO. This study evaluated the prevalence of Plasmodium falciparum multidrug resistance-1 gene (Pfmdr-1), genetic diversity of merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) among pregnant women with sub-patent parasitaemia from southwest Nigeria.

View Article and Find Full Text PDF

Successful transmission of Plasmodium falciparum from one person to another relies on the complete intraerythrocytic development of non-pathogenic sexual gametocytes infectious for anopheline mosquitoes. Understanding the genetic factors that regulate gametocyte development is vital for identifying transmission-blocking targets in the malaria parasite life cycle. Toward this end, we conducted a forward genetic study to characterize the development of gametocytes from sexual commitment to mature stage V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!