RegⅢγ promotes the proliferation, and inhibits inflammation response of macrophages by Akt, STAT3 and NF-κB pathways.

Int Immunopharmacol

State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, Henan, China; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, Henan, China; Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China. Electronic address:

Published: December 2024

As an inflammatory regulator, intestinal regenerating islet-derived 3 gamma (RegⅢγ) contributes to alleviating liver injury in liver diseases and colitis. However, it is unclear whether hepatic RegⅢγ exerts a vital impact on liver regeneration (LR). In this study, the expression profile and localization of RegⅢγ in LR were demonstrated by microarray analysis, qRT-PCR and immunofluorescence staining. Then, RAW264.7 cells with RegⅢγ deficiency and overexpression were obtained by the CRISPR/Cas9 system and lentivirus infection, respectively. MTT, flow cytometry, EdU, transwell, neutral red phagocytosis, and NO assays were performed to detect the functions of RegⅢγ in RAW264.7 cell proliferation and inflammation. Finally, the regulatory mechanism of RegⅢγ was explored by co-immunoprecipitation and Western blot assays. According to our findings, RegⅢγ showed significant expression changes in Kupffer cells during LR, and RegⅢγ overexpression stimulated the viability, proliferation, phagocytosis and migration of RAW264.7 cells, whereas RegⅢγ deficiency reversed these effects. Similarly, RegⅢγ overexpression facilitated the expression of HO-1 and IL-10, while RegⅢγ deficiency promoted NO production and p-Akt, p-STAT3, p-p65 and TNF-α expression. In conclusion, RegⅢγ may facilitate LR by promoting the proliferation of macrophages and inhibiting their inflammatory response through Akt, STAT3 and NF-κB pathways in the priming stage of LR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113442DOI Listing

Publication Analysis

Top Keywords

regⅢγ
13
cells regⅢγ
12
regⅢγ deficiency
12
akt stat3
8
stat3 nf-κb
8
nf-κb pathways
8
raw2647 cells
8
regⅢγ overexpression
8
regⅢγ promotes
4
proliferation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!