Soil management systems that do not prioritize conservation contribute to carbon (C) depletion in tropical environments. In the semi-arid region of Brazil, fruit farming has been a key driver for economic development, yet high agricultural yields depend on the use of costly inputs. We conducted a groundbreaking study in São Francisco Valley, northeastern Brazil, to investigate the effects of organic (OF) and synthetic fertilizers (CF) on carbon stock and stability, organic matter fractions, microorganismal carbon biomass (C-mic) and quality indexes, and C-CO emissions up to the 1 m of depth in grapevine soils. Additionally, we compared the fertilized soils with their nearby native vegetation under the Caatinga biome. Compared to native vegetation, the OF and CF grapevine soils store 33 Mg ha in one year and 26 Mg ha in two years of establishment, respectively. The total labile C stock was found to be 10.2 Mg ha and 6.0 Mg ha at a depth of 1 m. We observed the development of C-mic at 40-100 cm (approximately 280 mg kg) in the OF soil, which resulted in efficient C mineralization without disrupting microbial metabolism, which produced roughly 8.0 mg kg day of C-CO. The isotopic signature shows that C3 plants partially influence carbon and nutrient cycling in deeper OF soil layers. The soil in OF exhibited a high concentration of carbonate equivalent (32 g kg) and calcium (6 g kg), which resulted in the protection of labile C from decomposition. The Cambisols of viticultural farm under organic fertilization exhibited a balance of humic and fulvic acids fractions of organic matter, consequently, a potential stability of C. Our findings show that organic fertilization based on cassava juice, fish amino acids, and straw combined with manure under intensive irrigation contributes to an increase in C storage and microbial indicators in the soil. Therefore, this type of fertilization could be employed as a sustainable management system in grape farming in the Brazilian Northeast to improve soil conditions and crop yield under harsh environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122993DOI Listing

Publication Analysis

Top Keywords

microbial indicators
8
são francisco
8
francisco valley
8
organic matter
8
grapevine soils
8
native vegetation
8
organic fertilization
8
organic
6
soil
6
carbon
5

Similar Publications

Chia Derived Peptides Affecting Bacterial Membrane and DNA: Insights from Staphylococcus aureus and Escherichia coli Studies.

Plant Foods Hum Nutr

December 2024

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.

The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.

View Article and Find Full Text PDF

The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (T), ranging from below the method detection limit (< MDL) to 2240 ng L with an average of 330.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

The gut microbiota alterations interact with the pathogenesis and progression of chronic kidney disease (CKD). Probiotics have received wide attention as a potential management in CKD. We investigated the effects of Lactobacillus paracasei N1115 (LP N1115) on intestinal microbiota and related short-chain fatty acids (SCFAs) in end stage kidney disease patients on peritoneal dialysis (PD) in a single-center, prospective, randomized, double-blind, placebo-controlled study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!