In this paper, an electro-hydraulic exciter controlled by an alternating current distribution valve is proposed, and a systematic analysis of the influence of pipe effect on the vibration characteristics of the electro-hydraulic exciter is investigated by simulation and experiments. The vibration characteristics curves for different pipe parameters are obtained, and the relative errors between simulation and experiment are evaluated. Moreover, a significant regression model of pipe parameters and vibration characteristics of the electro-hydraulic exciter is established by using the quadratic regression analysis method and the Box-Behnken experiment design method. Significant differences in the influence of pipe parameters on vibration characteristics are obtained by ANOVA (Analysis of Variance), and the influence of pipe parameter interaction on vibration characteristics is discussed. The results show that the relative importance of pipe parameters on the vibration characteristics of electro-hydraulic exciter, from high to low, is as follows: pipe diameter, elastic modulus, and pipe length. Notably, there is also an interaction between the pipe parameters, and the significance of these interactions is ranked from high to low as the interaction between the layers of steel wire and diameter, the interaction between diameter and length, and the interaction between the layers of steel wire and length.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532405PMC
http://dx.doi.org/10.1038/s41598-024-78403-5DOI Listing

Publication Analysis

Top Keywords

vibration characteristics
28
electro-hydraulic exciter
20
pipe parameters
20
influence pipe
16
characteristics electro-hydraulic
16
parameters vibration
12
pipe
10
pipe vibration
8
high low
8
interaction layers
8

Similar Publications

Fabrication of hierarchical sapphire nanostructures using ultrafast laser induced morphology change.

Nanotechnology

January 2025

Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.

Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.

View Article and Find Full Text PDF

The vibron behavior of hydrogen bears significant importance for understanding the phases of solid hydrogen under high pressure. In this work, we reveal an unusual high-pressure behavior of hydrogen confined within nanopores through a combination of experimental measurements and theoretical calculations. The nanoconfined hydrogen molecules retain an hcp lattice up to 170 GPa, yet significant deviations from the vibrational characteristics of bulk hydrogen are observed in the primary vibrons of both Raman and infrared spectra.

View Article and Find Full Text PDF

Recently, we reported on the simple, scalable synthesis of quantum-confined one-dimensional (1D) lepidocrocite titanate nanofilaments (1DLs). Herein, we show, using solid-state UV-vis spectroscopy, that reducing the concentration of aqueous 1DL colloidal suspensions from 40 to 0.01 g/L increases the band gap energy and light absorption onset of dried filtered films from ≈3.

View Article and Find Full Text PDF

To analyze the motion laws of a magnetic and elastic coupling system under the influence of various factors, this paper proposes a magnetic coupling pendulum based on spring pieces and magnets-a magnetic-mechanical oscillator. By fixing spring pieces onto two non-magnetic bases and attaching magnets to their upper ends, which repel each other, the potential energy during oscillation is expanded using Fourier series. Subsequently, Lagrange equations are solved to study the effects of the first two terms of potential energy.

View Article and Find Full Text PDF

Gelatin is a versatile substance extensively used in medical and pharmaceutical industries for many applications, including capsule shells, X-ray film, infusion for plasma substitute, and the fabricating of artificial tissue. Fish scale gelatin is a profitable alternative source as a halal material despite its inferior quality. An addition of phenolic cross-linker may enhance the qualities of fish scale gelatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!