Molecular mechanisms of iron nanominerals formation in fungal extracellular polymeric substances (EPS) layers during fungus-mineral interactions.

Chemosphere

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin, 300072, China.

Published: November 2024

AI Article Synopsis

  • Extracellular polymeric substances (EPS) are crucial for fungal-mineral interactions, helping to form nanoscale minerals like iron nanominerals in natural environments where fungi grow on minerals.
  • Research on Trichoderma guizhouense NJAU 4742 shows that fungal biomineralization leads to the creation of EPS layers, with specific carbon groups being predominant in these layers.
  • The study reveals that interactions between fungi and minerals create oxygen vacancies on nanomineral surfaces, enhancing reactive oxygen species (ROS) activity, which may play a role in nutrient recycling and contaminant management in ecosystems.

Article Abstract

Extracellular polymeric substances (EPS), which envelop on fungal hyphae surface, interact strongly with minerals and play a crucial role in the formation of nanoscale minerals during biomineralization in nature environments. However, it remains poorly understood about the molecular mechanisms of nanominerals (i.e., iron nanominerals) formation in fungal EPS halos during fungus-mineral interactions. This process is vital because fungi typically grow attached to various mineral surfaces in nature. According to the changes of thickness of the fungal cell and EPS layers during the Trichoderma guizhouense NJAU 4742 and hematite cultivation experiments, we found that fungal biomineralization could trigger the formation of EPS layers. Fe-dominated nanominerals, aromatic C (283-286.1 eV), alkyl C (287.6-288.3 eV), and carboxylic C (288.4-289.1 eV) were the dominant chemical groups on the EPS layers, as determined by nanoscale secondary ion mass spectrometry (NanoSIMS), high-resolution transmission electron microscope (HRTEM), and carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Further, evidence from Fe K-edge X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) spectra indicated that oxygen vacancy (O) was formed on the Fe-dominated nanomineral surface during fungus-mineral interactions, which played an important role in catalyzing HO decomposition and HO∗ production. Taken together, the intrinsic peroxidase-like activity by reactive oxygen species (ROS) could modulate the Fe-dominated nanominerals formation in EPS layers to newly form a physical barrier between the cell and the external environments around hyphae, providing novel insights into the effects of ROS-mediated fungal-mineral interactions on fungal nutrient recycling, attenuation of contaminants, and biological control in nature environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143660DOI Listing

Publication Analysis

Top Keywords

eps layers
20
nanominerals formation
12
fungus-mineral interactions
12
molecular mechanisms
8
iron nanominerals
8
formation fungal
8
extracellular polymeric
8
polymeric substances
8
substances eps
8
nature environments
8

Similar Publications

Abstract: The effects of post-hydration heating over a broad range of temperatures are evident in many Mighei-like carbonaceous (CM) chondrites as a variety of mineral transitions. To better understand these processes and how a CM chondrite's starting composition may have affected them, we experimentally heated two meteorites with different degrees of aqueous alteration, Allan Hills 83100 and Murchison, at 25 °C temperature steps from 200 °C to 950 °C and 300 °C to 750 °C, respectively. During heating, synchrotron in situ X-ray diffraction patterns were collected.

View Article and Find Full Text PDF

The gravity-driven membrane (GDM) system is an energy-efficient and environmentally sustainable water purification process; however, after prolonged operation, its membrane flux remains relatively low, making it necessary to adopt effective strategies for improving system performance. In this study, the effects of hydrostatic pressure (60, 100, 200 mbar) and pre-coating with aluminum-based flocs (ABF) on GDM flux and organic matter removal were investigated, and the regulatory mechanisms of the bio-cake layer were explored through interactions between morphological structure, composition and microbes. The results showed that the stable flux of the GDM-ABF system at a hydrostatic pressure of 60 mbar was almost equal to that at 100 mbar, and it outperformed higher hydrostatic pressure in organic matter removal, resulting in a more porous bio-cake layer structure.

View Article and Find Full Text PDF

This research provides an important approach for low-nitrogen wastewater treatment through anaerobic ammonium oxidation (Anammox), and Anammox granule sludge (AnGS) in the Upflow. Blanket Filter Anammox (UBFA) system through shortening the hydraulic retention time was successfully cultivated. The percentage of medium granules (1.

View Article and Find Full Text PDF

Unravelling depth layers of microbial communities, nitrogen transformation rate, and extracellular polymeric substances in anammox granules.

Bioresour Technol

November 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Anammox granules harbor a variety of bacteria, with each granule layer providing a niche for bacteria with specific metabolic functions. To investigate microbial distribution, nitrogen transformation rates, and extracellular polymeric substance (EPS) content across the depth layers of anammox granules, granules sized 0.9-2.

View Article and Find Full Text PDF
Article Synopsis
  • Exopolysaccharides (EPSs) are complex carbohydrates secreted by microorganisms like lactic acid bacteria (LAB), which have potential health benefits and applications in food and pharmaceuticals.
  • Various methods have been developed to produce, extract, purify, and analyze LAB-EPSs, including morphological observation, ethanol precipitation, and chromatographic techniques.
  • This review details the methods to study LAB-produced EPSs, highlighting challenges, gaps in knowledge, and suggestions for improving consistency and scalability for industry use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!