The novel substituted benzamide eticlopride, (S)-(-)-5-chloro-3-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxy salicylamide hydrochloride (A38503; FLB 131), was radiolabelled to high specific activity and used for in vivo receptor binding studies in the rat brain. Intravenous injections of [3H]eticlopride resulted in a rapid accumulation of radioactivity in several brain regions: striatum greater than olfactory tubercle greater than septum greater than substantia nigra greater than frontal cortex greater than cerebellum. Approximately 95% of the radioactivity recovered from the striatum was in the form of authentic eticlopride, as determined by thin-layer chromatography. Two hours after injection, the ratio between the amount of radioactivity present in the striatum and in the cerebellum was approximately 10:1. The in vivo binding of [3H]eticlopride was saturable in all dopamine-rich areas, with a very low proportion of non-specific binding. The specific in vivo binding of [3H]eticlopride was blocked by several dopamine antagonists, including haloperidol, (+)-butaclamol, spiperone, d,l-sulpiride and remoxipride. The dopamine agonist N-n-propylnorapomorphine, but not apomorphine, was found to be a potent blocker of in vivo [3H]eticlopride binding. Serotonin and noradrenaline receptor antagonists did not prevent the in vivo binding of [3H]eticlopride. Autoradiographic analysis of the in vivo [3H]eticlopride binding showed a high density of binding sites in the striatum, nucleus accumbens and the olfactory tubercle. Moderate binding was found in the hippocampal formation and in the entorhinal area, but little or no binding was detected in other cortical regions. [3H]Eticlopride binding in all these areas was blocked by pretreatment with (+)-butaclamol. Taken together, these findings show that the substituted benzamide compound [3H]eticlopride passes readily into the brain and binds with high specificity to dopamine or neuroleptic receptors in dopamine-rich brain areas. Thus, eticlopride may be a useful tool in studies of dopamine D-2 receptors in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-2999(86)90543-1DOI Listing

Publication Analysis

Top Keywords

vivo binding
16
binding
12
substituted benzamide
12
binding [3h]eticlopride
12
[3h]eticlopride binding
12
[3h]eticlopride
9
rat brain
8
olfactory tubercle
8
vivo [3h]eticlopride
8
vivo
7

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Recommended Opioid Receptor Tool Compounds: Comparative for Receptor Selectivity Profiles and for Pharmacological Antinociceptive Profiles.

ACS Pharmacol Transl Sci

January 2025

Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including S-GTPγS functional and cAMP based assays.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment.

Theranostics

January 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of Diels et Gilg flavonoids (THF) on acute hepatic injury (AHI). First, high-performance liquid chromatography (HPLC) fingerprints were established to obtain the main chemical components of THF. According to the network pharmacology databases, collect active targets of AHI and potential targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!