Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-frequency hearing is critically important for speech and music perception. However, technical and anatomical limitations previously made it difficult to study the mechanics of the low-frequency parts of the cochlea, but this changed with the introduction of optical coherence tomography vibrometry. With this technique, sound-evoked vibration can be measured from the apex of a fully intact cochlea. Results of such measurements generated controversy because conventional traveling waves, the hallmark of which is longer group delay closer to the helicotrema, were absent within the apical 20% of the guinea pig cochlea (Burwood et al, Science Advances 8:eabq2773, 2022). The validity of this result was questioned, primarily because group delays were calculated from phase values averaged across many points within the organ of Corti. Here we show that variations in phase across the organ of Corti are minor and does not affect the group delay significantly. We also assess the precision of phase measurements with optical coherence tomography. An artificial target with reflectivity similar to the organ of Corti was used. These measurements revealed that a commonly used commercial optical coherence tomography system produces half-cycle errors in 1-5 % of pixels, leading to a bimodal distribution of phase values. This problem can be easily addressed by using medians when computing averages, as was done by Burwood et al (2022). Hence, neither averaging across pixels nor technical factors can explain the apparent lack of conventional traveling waves at the apex of the guinea pig cochlea at low stimulus levels. The physiological mechanisms that operate at the apex apparently differ from other cochlear regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2024.109137 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!