A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing persistent organic pollutants in seawater at a multifunctional international harbor influenced by industrial riverbank activities. | LitMetric

AI Article Synopsis

  • - The study investigates persistent organic pollutants (POPs) in Kaohsiung Harbor seawater, revealing varying toxicity levels, with dioxins (PCDD/Fs) making up 68% of total toxicity.
  • - Most POPs are found in the particle phase, suggesting common pollution sources, particularly in areas affected by river effluents.
  • - The research highlights that certain pollutants can transform under UV light and stresses the importance of better wastewater practices and regulations to manage POPs in marine environments.

Article Abstract

The objective of this study is to comprehensively characterize persistent organic pollutants (POPs) in seawater at Kaohsiung Harbor, focusing on their concentrations, partitioning behaviors, and profiles in both particle and liquid phases. We analyzed 100 L seawater for each sample, finding total dioxin-like toxicity (PCDD/Fs + PCBs + PBDD/Fs) ranging from 0.00936 to 0.167 pg WHO-TEQ/L, with PCDD/Fs accounting for 68 % of total toxicity. POPs predominantly appeared in the particle phase, observed in over 80 % of samples, except for PCBs. The observed correlations between particulate matter (PM) and chlorinated POPs at sites receiving river effluents suggest shared pollution sources. The liquid partition of PCDD/Fs, PCBs, and PBDEs in the seawater shows an inverse relationship with log Kow and a direct proportionality with solubility, particularly above 0.1 μg/L. Furthermore, PBDEs in seawater can transform into PBDD/Fs upon UV light exposure, highlighting another potential pathway for the persistence and spread of these harmful contaminants in the environment. These findings emphasize the need for field-based investigations to assess PBDF formation in aquatic environments and underscore the importance of stronger mitigation strategies, including better wastewater treatment and stricter discharge regulations to reduce POPs in marine ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.117213DOI Listing

Publication Analysis

Top Keywords

persistent organic
8
organic pollutants
8
pbdes seawater
8
seawater
5
characterizing persistent
4
pollutants seawater
4
seawater multifunctional
4
multifunctional international
4
international harbor
4
harbor influenced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!