Synergistic singlet oxygen and UV irradiation for efficient intracellular ARGs removal via peroxymonosulfate/catalytic membrane-UV system.

J Hazard Mater

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China. Electronic address:

Published: December 2024

The eliminate of antibiotic resistance genes (ARGs) is pivotal in mitigating the proliferation of antibiotic resistance. In this study, a PMS/CM-UV system was engineered, combining a CoO-modified carbon nanotubes catalytic membrane with LED-UV lamps, to effectively eliminate intracellular ARGs (iARGs). Leveraging the synergistic effect of singlet oxygen (O) and UV irradiation, this process requires only a brief hydraulic retention time of a few minutes and standard UV disinfection irradiation intensity. The cellular physiological function and transcriptomic analysis indicated that reactive oxygen species (ROS) and UV irradiation compromised the cell membrane integrity of E. coli MG1655-SD, as indicated by the down-regulation of the feoB gene, leading to an increased concentration of O within the intracellular environment. The synergistic effect of O and UV irradiation resulted in the down-regulation of btuE, thereby curtailing the SOS and oxidative stress responses. Additionally, UV irradiation down-regulated ftsK, uvrB, and uvrA genes, involved in DNA replication, damage site recognition, and self-repair. These processes collectively contribute to the oxidative damage of iARGs by O before their release into the extracellular environment. This work provided a strategy to develop advanced oxidation disinfection technology aimed at ARGs removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136385DOI Listing

Publication Analysis

Top Keywords

synergistic singlet
8
singlet oxygen
8
oxygen irradiation
8
intracellular args
8
args removal
8
antibiotic resistance
8
irradiation
6
irradiation efficient
4
efficient intracellular
4
args
4

Similar Publications

Photophysical properties of condensed systems generally originate from collective contributions of all components in their stochastically fluctuated structures and are strongly influenced under strain of chromophores. To precisely identify how the stochastically fluctuated monomers synergistically manipulate the properties, we propose a statistic strategy over sufficient ab initio molecular dynamics (AIMD) samplings and for the first time uncover that synergistic oscillatory twisting (SOT) of neighboring under-strain monomers manipulates the bifunction of rubrene crystal.  The under-strain trunk SOT can regulate both singlet fission (SF) and triplet-triplet annihilation (TTA), enabling their coexistence and dominance switching by dynamically modulating the matching of excitation energies.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Copper-based sulfides are attractive candidates for NIR I and II responsive photothermal therapy but often suffer from high hydrophobicity, suboptimal photothermal conversion, and poor biostability and biocompatibility. In the present work, a rapid, one-pot synthesis method was developed to obtain Au-doped CuS (ACSH NDs) dual plasmonic nanodots. ACSH NDs exhibit excellent peroxidase-like catalytic activity for pH-responsive OH radical generation along with efficient glutathione depletion under tumor microenvironment mimicking conditions.

View Article and Find Full Text PDF

In semiconductor catalysts, rational doping of nonmetallic elements holds significant scientific and technological importance for enhancing photocatalytic performance. Here, using a one-step hydrothermal technique, we synthesized iodine-doped BiOCl composite and evaluated the impact of iodine doping on its photocatalytic capability for organic dye degradation under visible light irradiation. In this study, we demonstrate that the introduction of iodide ions not only provides an ideal built-in electric field (BIEF) for BiOCl but also induces the generation of additional oxygen vacancies (OVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!