Understanding Cu binding with DNA: A molecular dynamics study comparing Cu and Mg binding to the Dickerson DNA.

Biophys Chem

School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Published: January 2025

Cu ions led DNA damage by reactive oxygen species (ROS) is widely known biological phenomena. The ionic radii of Cu and Mg being similar, the binding of Cu ions to DNA is expected to be similar to that of the Mg ions. However, little is known how Cu ions bind in different parts (phosphate, major and minor grooves) of a double-strand (ds) DNA, especially at atomic level. In the present study, we employ molecular dynamic (MD) simulations to investigate the binding of Cu ions with the Dickerson DNA, a B-type dodecamer double stranded (ds) DNA. The binding characteristics of Cu and Mg ions with this dsDNA are compared to get an insight into the differences and similarities in binding behavior of both ions. Unlike Mg ions, the first hydration shell of Cu is found to be labile, thus it shows both direct and indirect binding with the dsDNA, i.e., binding through displacement of water from the hydration shell or through the hydration shell. Though the binding propensity of Cu ions with dsDNA is observed relatively stronger, the binding order to phosphates, major groove, and minor groove is found qualitatively similar (phosphates > major groove > minor groove) for both ions. The study gives a deep understanding of Cu binding to DNA, which could be helpful in rationalizing the Cu led ROS-mediated DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2024.107347DOI Listing

Publication Analysis

Top Keywords

hydration shell
12
binding
10
ions
10
dna
9
understanding binding
8
binding dna
8
dickerson dna
8
dna damage
8
binding ions
8
ions ions
8

Similar Publications

FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy.

Int J Pharm

January 2025

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:

Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

This study provides a comprehensive analysis of the interactions between dimethyl sulfoxide (DMSO) and two small peptides, diglycine and -acetyl-glycine-methylamide (NAGMA), in aqueous solutions using FTIR spectroscopy and density functional theory (DFT) calculations. ATR-FTIR spectroscopy and DFT results revealed that DMSO does not form direct bonds with the peptides, suggesting that DMSO indirectly influences both peptides by modifying the surrounding water molecules. The analysis of HDO spectra allowed for the isolation of the contribution of water molecules that were simultaneously altered by the peptide and DMSO, and it also explained the changes in the hydration shells of the peptides in the presence of DMSO.

View Article and Find Full Text PDF

The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.

View Article and Find Full Text PDF
Article Synopsis
  • BOMD simulations were conducted to explore the structure and dynamics of hydration shells around five trivalent lanthanide ions at room temperature, revealing complexities in accurately classifying their molecular geometry.
  • A cluster microsolvation approach was used, involving interactions of Ln ions (La, Nd, Gd, Er, Lu) with up to 27 water molecules, validating the effectiveness of the rSCAN-3c method in predicting average Ln-O distances and coordination numbers.
  • The study found that the first hydration shells displayed significant dynamism with varying coordination geometries, highlighting the efficiency of microsolvation models in replicating the solvation structures of these rare-earth ions and improving understanding of water dynamics around them.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!