Cu ions led DNA damage by reactive oxygen species (ROS) is widely known biological phenomena. The ionic radii of Cu and Mg being similar, the binding of Cu ions to DNA is expected to be similar to that of the Mg ions. However, little is known how Cu ions bind in different parts (phosphate, major and minor grooves) of a double-strand (ds) DNA, especially at atomic level. In the present study, we employ molecular dynamic (MD) simulations to investigate the binding of Cu ions with the Dickerson DNA, a B-type dodecamer double stranded (ds) DNA. The binding characteristics of Cu and Mg ions with this dsDNA are compared to get an insight into the differences and similarities in binding behavior of both ions. Unlike Mg ions, the first hydration shell of Cu is found to be labile, thus it shows both direct and indirect binding with the dsDNA, i.e., binding through displacement of water from the hydration shell or through the hydration shell. Though the binding propensity of Cu ions with dsDNA is observed relatively stronger, the binding order to phosphates, major groove, and minor groove is found qualitatively similar (phosphates > major groove > minor groove) for both ions. The study gives a deep understanding of Cu binding to DNA, which could be helpful in rationalizing the Cu led ROS-mediated DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2024.107347 | DOI Listing |
Int J Pharm
January 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:
Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117580, Singapore.
Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
This study provides a comprehensive analysis of the interactions between dimethyl sulfoxide (DMSO) and two small peptides, diglycine and -acetyl-glycine-methylamide (NAGMA), in aqueous solutions using FTIR spectroscopy and density functional theory (DFT) calculations. ATR-FTIR spectroscopy and DFT results revealed that DMSO does not form direct bonds with the peptides, suggesting that DMSO indirectly influences both peptides by modifying the surrounding water molecules. The analysis of HDO spectra allowed for the isolation of the contribution of water molecules that were simultaneously altered by the peptide and DMSO, and it also explained the changes in the hydration shells of the peptides in the presence of DMSO.
View Article and Find Full Text PDFRSC Adv
January 2025
CINVESTAV-Monterrey, PIIT Apodaca Nuevo León 66628 Mexico
The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.
View Article and Find Full Text PDFACS Omega
December 2024
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!