Purpose: Hyperuricemia (HUA) is an important factor leading to chronic kidney disease (CKD). The kidney tubular inflammatory response is activated in HUA. This study aimed to investigate whether lactate dehydrogenase A (LDHA) is involved in mediating uric acid-induced kidney tubular inflammatory response.

Methods: In vivo, an HUA mouse model was established by continuous intraperitoneal injection of potassium oxonate (PO) for one week. A total of 18 C57BL/6J male adult mice were divided into three groups: control group, HUA group, and HUA+oxamate group, with six mice in each group. Oxamate was intraperitoneally injected into the mice one hour after PO injection. In vitro, an HUA model was simulated by stimulating HK-2 cells with uric acid. Oxamate and tempol inhibited LDHA and reactive oxygen species (ROS) in HK-2 cells.

Results: In HUA mice, blood uric acid levels were significantly elevated. LDHA in kidney tubular cells was significantly increased in both in vivo and in vitro HUA models, accompanied by an increase in kidney tubular inflammation and ROS. Mechanistically, LDHA mediates uric acid-induced inflammation to kidney tubular cells through the ROS/NLRP3 pathway. Pharmacologic inhibition of LDHA or ROS in kidney tubular cells can significantly ameliorate inflammation response caused by uric acid.

Conclusions: LDHA in kidney tubular cells significantly was increased in HUA models. LDHA mediates kidney inflammation response induced by uric acid through the ROS/NLRP3 pathway. This study may provide a new intervention target for preventing kidney tubular inflammation caused by uric acid.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641963.2024.2424834DOI Listing

Publication Analysis

Top Keywords

kidney tubular
36
uric acid
20
tubular cells
16
tubular inflammation
12
kidney
11
tubular
9
uric
8
mediates kidney
8
hua
8
tubular inflammatory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!