Rationale: Diabetic retinopathy (DR) is linked to an increased risk of psychiatric and neurological conditions, largely due to chronic inflammation, oxidative stress, and microvascular damage associated with the disease. Emerging evidence suggests that Cassia seed extract has significant anti-inflammatory and antioxidant properties. However, the therapeutic potential of obtusin, a major compound in Cassia seed, and its underlying mechanisms remain unclear.
Objective: This study aimed to evaluate the therapeutic efficacy of obtusin in the treatment of DR.
Methods: Db/db mice were treated with obtusin (5 and 10 mg/kg/day) for 12 weeks. Throughout the study, body weight, blood glucose levels, and lipid profiles were monitored. Retinal histopathology and transmission electron microscopy were used to assess the pharmacological effects of obtusin in vivo. Additionally, in vitro assays were conducted on human retinal microvascular endothelial cells cultured under high glucose conditions to explore obtusin's potential role in mitigating DR.
Results: Obtusin treatment in diabetic mice significantly reduced blood glucose levels, improved dyslipidemia, thickened retinal layers, reduced retinal oxidative stress, and inhibited the upregulation of inflammatory cytokines. It also lessened fundus microangiopathy and preserved the retina's normal barrier function. Mechanistic in vitro analysis suggested that obtusin targets the Poldip2-Nox4 oxidative stress axis and the NF-κB-MAPK-VEGFA inflammatory pathway, both of which are implicated in DR.
Conclusions: Our findings suggest that the Poldip2-Nox4 oxidative stress axis and the NF-κB-MAPK-VEGFA inflammatory pathway could be therapeutic targets for obtusin in the treatment of DR and its associated psychiatric and neurological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-024-06689-4 | DOI Listing |
J Intensive Care
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Theriogenology Department, Faculty of Veterinary Medicine, New-Valley University, New Valley, 725211, Egypt.
Background: Saidi sheep are one of the most important farm animals in Upper Egypt, particularly in the Assiut governorate. Since they can provide meat, milk, fiber, and skins from low-quality roughages, sheep are among the most economically valuable animals bred for food in Egypt. Regarding breeding, relatively little is known about the Saidi breed.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
Background: Acute lung injury (ALI) is a severe condition with multifaceted causes, including inflammation and oxidative stress. This research investigates the influence of m6A (N6-methyladenosine) modification on GBP4, a protein pivotal for macrophage polarization, a critical immune response in ALI.
Methods: Utilizing a mouse model to induce ALI, the study analyzed GBP4 expression in alveolar macrophages.
BMC Pulm Med
January 2025
Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7618868367, Iran.
Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!