Understanding the phyllomicrobiome dynamics in cauliflower plants holds significant promise for enhancing crop resilience against black rot disease, caused by Xanthomonas campestris pv. campestris. In this study, the culturable microbiome and metagenomic profile of tolerant (BR-161) and susceptible (Pusa Sharad) cauliflower genotypes were investigated to elucidate microbial interactions associated with disease tolerance. Isolation of phyllospheric bacteria from asymptomatic and black rot disease symptomatic leaves of tolerant and susceptible cultivars yielded 46 diverse bacterial isolates. Molecular identification via 16S rRNA sequencing revealed differences in the diversity of microbial taxa between genotypes and health conditions. Metagenomic profiling using next-generation sequencing elucidated distinct microbial communities, with higher diversity observed in black rot disease symptomatic leaf of BR-161. Alpha and beta diversity indices highlighted differences in microbial community structure and composition between genotypes and health conditions. Taxonomic analysis revealed a core microbiome consisting of genera such as Xanthomonas, Psychrobacillus, Lactobacillus, and Pseudomonas across all the samples. Validation through microbiological methods confirmed the presence of these key genera. The findings provide novel insights into the phyllomicrobiome of black rot-tolerant and susceptible genotypes of cauliflower. Harnessing beneficial microbial communities identified in this study offers promising avenues for developing sustainable strategies to manage black rot disease and enhance cauliflower crop health and productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-024-03969-2DOI Listing

Publication Analysis

Top Keywords

black rot
20
rot disease
20
tolerant susceptible
8
susceptible genotypes
8
disease symptomatic
8
genotypes health
8
health conditions
8
microbial communities
8
black
6
disease
6

Similar Publications

Inhibitory effects of cadmium and hydrophilic cadmium telluride quantum dots on the white rot fungus .

Heliyon

January 2025

Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.

The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

is a bacterial phytopathogen that causes soft and black rot and actively spreads worldwide. Our study is the first development of immunoassays for detecting . We immunized rabbits and obtained serum with an extremely high titer (1:10).

View Article and Find Full Text PDF

Black root rot is a dangerous disease affecting many crops. It is caused by pathogens formerly known as and then reclassified as two cryptic species, and . The aim of this study was to perform species identification, morphological characterization, and pathogenicity tests for fungal isolates obtained from tobacco roots with black root rot symptoms in Poland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!