Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The N-His73 methylation of β-actin by histidine methyltransferase SETD3 is required for the integrity of the cellular cytoskeleton. Modulation of SETD3 activity in human cells facilitates cancer-like changes to the cell phenotype. SETD3 binds β-actin in an extended conformation, with a conserved bend-like motif surrounding His73. Here, we report on the catalytic specificity of SETD3 towards i, i + 3 stapled β-actin peptides possessing a limited conformational freedom surrounding the His73 substrate residue via positions Glu72 and Ile75. Stapled β-actin peptides were observed to be methylated less efficiently than the linear β-actin peptide. None of the stapled β-actin peptides efficiently inhibited the SETD3-catalyzed N-His73 methylation reaction. Molecular dynamics simulations demonstrated that the unbound and SETD3-bound β-actin peptides display different backbone flexibility and bend-like conformations, highlighting their important role in substrate binding and catalysis. Overall, these findings suggest that reduced backbone flexibility of β-actin prevents the formation of optimal protein-peptide interactions between the enzyme and substrate, highlighting that the backbone flexibility needs to be considered when designing β-actin-based probes and inhibitors of biomedically important SETD3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531485 | PMC |
http://dx.doi.org/10.1038/s41598-024-76562-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!