A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced photovoltaic panel defect detection via adaptive complementary fusion in YOLO-ACF. | LitMetric

Detecting defects on photovoltaic panels using electroluminescence images can significantly enhance the production quality of these panels. Nonetheless, in the process of defect detection, there often arise instances of missed detections and false alarms due to the close resemblance between embedded defect features and the intricate background information. To tackle this challenge, we propose an Adaptive Complementary Fusion (ACF) module designed to intelligently integrate spatial and channel information. This module is seamlessly integrated into YOLOv5 for detecting defects on photovoltaic panels, aiming primarily to enhance model detection performance, achieve model lightweighting, and accelerate detection speed. In order to validate the efficacy of the proposed module, we conducted experiments using a dataset comprising 4500 electroluminescence images of photovoltaic panels. Compared to the cutting-edge detection capability of YOLOv8, our YOLO-ACF method exhibits enhancements of 5.2, 0.8, and 2.3 percentage points in R, mAP50, and mAP50-95, respectively. In contrast to the lightest and fastest YOLOv5, YOLO-ACF achieves reductions of 12.9%, 12.4%, and 4.2% in parameters, weight, and time, respectively, while simultaneously boosting FPS by 5%. Through qualitative and quantitative comparisons with various alternative methods, we demonstrate that our YOLO-ACF strikes a good balance between detection performance, model complexity, and detection speed for defect detection on photovoltaic panels. Moreover, it demonstrates remarkable versatility across a spectrum of defect types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531521PMC
http://dx.doi.org/10.1038/s41598-024-75772-9DOI Listing

Publication Analysis

Top Keywords

photovoltaic panels
16
defect detection
12
detection
8
adaptive complementary
8
complementary fusion
8
detecting defects
8
defects photovoltaic
8
electroluminescence images
8
detection performance
8
detection speed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!