Generation of TIM chaperone substrate complexes.

Methods Enzymol

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. Electronic address:

Published: November 2024

Holdase chaperones are essential in the mitochondrial membrane-protein biogenesis as they stabilize preproteins and keep them in an import-competent state as they travel through the aqueous cytosol and intermembrane space. The small TIM chaperones of the mitochondrial intermembrane space function within a fine balance of client promiscuity and high affinity binding, while being also able to release their client proteins without significant energy barrier to the downstream insertases/translocases. The tendency of the preproteins to aggregate and the dynamic nature of the preprotein-chaperone complexes makes the preparation of these complexes challenging. Here we present two optimized methods for complex formation of highly hydrophobic precursor proteins and chaperones: a pull-down approach and an in-vitro translation strategy. In the former, attaching the client protein to an affinity resin keeps the individual client protein copies apart from each other and decreases the client self-aggregation probability, thereby favouring complex formation. In the latter approach, a purified chaperone, added to the cell-free protein synthesis, captures the nascent precursor protein. The choice of method will depend on the desired client-chaperone complex amount, or the need for specific labeling scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2024.07.051DOI Listing

Publication Analysis

Top Keywords

intermembrane space
8
complex formation
8
client protein
8
client
5
generation tim
4
tim chaperone
4
chaperone substrate
4
substrate complexes
4
complexes holdase
4
holdase chaperones
4

Similar Publications

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Chemical mitochondrial uncouplers are protonophoric, lipophilic small molecules that transport protons from the mitochondrial intermembrane space into the matrix independent of ATP synthase, thus uncoupling nutrient oxidation from ATP production. Our previous work identified BAM15 (IC 0.27 μM) as a potent and efficacious mitochondrial uncoupler with potential for obesity treatment.

View Article and Find Full Text PDF

Targeting signals required for protein sorting to sub-chloroplast compartments.

Plant Cell Rep

December 2024

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.

Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.

View Article and Find Full Text PDF

METTL4-Mediated Mitochondrial DNA N6-Methyldeoxyadenosine Promoting Macrophage Inflammation and Atherosclerosis.

Circulation

December 2024

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, China. (L.Z., X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.).

Background: Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - p66Shc is an adaptor protein crucial for regulating cellular functions including signaling pathways, mitochondrial activity, and the production of reactive oxygen species (ROS), with its location shifting to mitochondria under oxidative stress.
  • - The protein is also implicated in mitochondria-associated membranes (MAM), which play a role in key cellular processes like calcium balance, apoptosis (cell death), and autophagy (cell cleaning), suggesting p66Shc's involvement in determining cell fate.
  • - This study investigates the distribution of p66Shc in different parts of mouse liver tissue and HepG2 cells, demonstrating a significant presence of p66Shc in MAM under both normal and oxidative stress conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!