Rare earth elements (REEs) have raised significant environmental contamination concerns, yet the combined toxicity of REE mixtures remains inadequately understood. In this study, acute toxicity of individual, binary and ternary mixtures of lanthanum (La), cerium (Ce), and dysprosium (Dy) on neonatal Daphnia magna was investigated. Dy exhibited the greatest toxicity on neonatal Daphnia magna, followed by La and Ce. The concentration addition (CA) model was superior to the independent action (IA) model for predicting the toxicity of binary mixtures. The CA model indicated additive effects for LaCe mixture and antagonistic effects for LaDy and CeDy mixtures. In contrast, IA model suggested synergistic interactions for LaCe and LaDy mixtures, with antagonistic effects for CeDy mixture when considering dissolved concentration and synergistic effects when considering free-ion concentration. The nonadditive interactions and deviation parameters from the prediction of binary mixture toxicity were assessed by using MixTox model. The ternary mixture of LaCeDy exhibited antagonistic effects on Daphnia magna, and IA model slightly outperformed CA model. Overall, the type of combined toxicity in REE mixtures is influenced by constituents in the mixture and concentration levels. These findings provide scientific basis for the toxicological assessment, risk evaluation and pollution control of REE mixtures. ENVIRONMENTAL IMPLICATION: Rare earth elements (REEs) level is increasing in water environment due to wide use and exploitation. However, currently, we know little about the difference of REEs toxicity and combined toxicity of mixture to aquatic organism, which limited the assessment of toxicity and hazard risk of REEs in natural water. Here, this study demonstrates the acute toxicity of individual, binary and ternary mixtures of lanthanum, cerium, and dysprosium on neonatal Daphnia magna according to the measured data and predicted model, identifying the influence factors for combined toxicity. This discovery offers new insights for the assessment and prediction of REEs toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!