AI Article Synopsis

  • The Notch receptor is activated by ligands from the Delta/Serrate/Lag-2 family, but the structure of its signaling complex is not fully understood.
  • This study focuses on the Notch-1 EGF 20-27 region, using advanced techniques like crystallography and NMR, revealing it has a rigid yet flexible structure influenced by calcium ions.
  • Findings indicate that variations in the Notch-1 protein affect its activation by ligands, highlighting the importance of calcium in maintaining structural integrity and the role of different interactions in Drosophila mutations.

Article Abstract

The Notch receptor is activated by the Delta/Serrate/Lag-2 (DSL) family of ligands. The organization of the extracellular signaling complex is unknown, although structures of Notch/ligand complexes comprising the ligand-binding region (LBR), and negative regulatory region (NRR) region, have been solved. Here, we investigate the human Notch-1 epidermal growth factor-like (EGF) 20-27 region, located between the LBR and NRR, and incorporating the Abruptex (Ax) region, associated with distinctive Drosophila phenotypes. Our analyses, using crystallography, NMR and small angle X-ray scattering (SAXS), support a rigid, elongated organization for EGF20-27 with the EGF20-21 linkage showing Ca-dependent flexibility. In functional assays, Notch-1 variants containing Ax substitutions result in reduced ligand-dependent trans-activation. When cis-JAG1 was expressed, Notch activity differences between WT and Ca-binding Ax variants were less marked than seen in the trans-activation assays alone, consistent with disruption of cis-inhibition. These data indicate the importance of Ca-stabilized structure and suggest the balance of cis- and trans-interactions explains the effects of Drosophila Ax mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2024.10.012DOI Listing

Publication Analysis

Top Keywords

notch receptor
8
region
6
structural functional
4
functional studies
4
studies egf20-27
4
egf20-27 region
4
region reveal
4
reveal features
4
features human
4
human notch
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!