Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electronic waste, commonly known as "e-waste", refers to electrical or electronic equipment that has been discarded. E-waste, especially waste-printed circuit boards (WPCBs), must be handled carefully; as they can cause serious environmental pollution and threaten the health of local residents. The most abundant metal in WPCBs is copper, in addition to gold, aluminum, nickel, and lead, with grades that are tens or even hundreds of times higher than those of natural deposits. Due to the superiority of biorecovery methods in terms of their environmental friendliness, low capital investment and low operating costs, this study focuses on recent advances in the bioleaching and biosorption of metals from WPCBs. First, the principles, methods, and efficiency of bioleaching are reviewed in detail, particularly acidolysis, redoxolysis, and complexolysis. Additionally, six major factors (microbes, pH, temperature, nutrients, aeration, and substrate) affecting bioleaching are analyzed. The principles, kinetics, and isotherms of biosorption are then reviewed, and the factors influencing biosorption, including temperature and pH, are elaborated on. Hybrid recovery with biorecovery is explored, as these integrated strategies are conducive to achieving selective and efficient metal recovery. Finally, we discuss the advantages and disadvantages of the bioleaching and biosorption processes for metal recovery from WPCBs, particularly in terms of recovery efficiency, recovery time, and cost. Furthermore, future developments in biorecovery are also examined, along with useful ideas on how to accomplish energy-efficient metal recovery from WPCBs in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!