A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High spatiotemporal resolution estimation and analysis of global surface CO concentrations using a deep learning model. | LitMetric

AI Article Synopsis

  • * Using advanced AI techniques, researchers created a model that accurately predicts daily global CO concentrations at a fine resolution, showing high levels in northern and central China and northern India, especially during winter.
  • * The study found significant increases in CO levels during wildfires in regions like the Indochina Peninsula and the Amazon, along with estimated CO-related mortality, particularly high in China; ongoing monitoring is crucial for public health.

Article Abstract

Ambient carbon monoxide (CO) is a primary air pollutant that poses significant health risks and contributes to the formation of secondary atmospheric pollutants, such as ozone (O). This study aims to elucidate global CO pollution in relation to health risks and the influence of natural events like wildfires. Utilizing artificial intelligence (AI) big data techniques, we developed a high-performance Convolutional Neural Network (CNN)-based Residual Network (ResNet) model to estimate daily global CO concentrations at a high spatial resolution of 0.07° from June 2018 to May 2021. Our model integrated the global TROPOMI Total Column of atmospheric CO (TCCO) product and reanalysis datasets, achieving desirable estimation accuracies with R-values (correlation coefficients) of 0.90 and 0.96 for daily and monthly predictions, respectively. The analysis reveals that the CO concentrations were relatively high in northern and central China, as well as northern India, particularly during winter months. Given the significant role of wildfires in increasing surface CO levels, we examined their impact in the Indochina Peninsula, the Amazon Rain Forest, and Central Africa. Our results show increases of 60.0%, 28.7%, and 40.8% in CO concentrations for these regions during wildfire seasons, respectively. Additionally, we estimated short-term mortality cases related to CO exposure in 17 countries for 2019, with China having the highest mortality cases of 23,400 (95% confidence interval: 0-99,500). Our findings highlight the critical need for ongoing monitoring of CO levels and their health implications. The daily surface CO concentration dataset is publicly available and can support future relevant sustainable studies, which is accessible at https://doi.org/10.5281/zenodo.11806178.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123096DOI Listing

Publication Analysis

Top Keywords

health risks
8
concentrations high
8
mortality cases
8
high spatiotemporal
4
spatiotemporal resolution
4
resolution estimation
4
estimation analysis
4
global
4
analysis global
4
global surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!