NAGK regulates the onset of puberty in female mice.

Theriogenology

Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China. Electronic address:

Published: January 2025

This study examines the role of N-acetylglucosamine kinase (NAGK) in initiating puberty in female mice. We employed real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence to measure NAGK expression in the hypothalamic-pituitary-ovarian axis across various developmental stages: infant, prepuberty, puberty, and adult. We further investigated the impact of Nagk gene knockdown on puberty in female mice. This included assessing the expression of puberty-related genes both in vivo and in vitro, GT1-7 cells proliferation and apoptosis, concentrations of GnRH and Kisspeptin, puberty onset timing, serum levels of progesterone (P) and estradiol (E), and ovarian morphology. Results revealed that Nagk mRNA is present in the hypothalamus, pituitary, and ovaries throughout different developmental stages in female mice. In the hypothalamus, Nagk mRNA levels were comparable during infant and prepuberty, lowest during puberty, and highest in adult. In the pituitary, Nagk mRNA peaked in adult, with no significant variation between infant, prepuberty, and puberty. In the ovaries, Nagk mRNA levels increased during puberty and peaked in adult. NAGK is predominantly located in the arcuate nucleus (ARC), periventricular nucleus (PeN), dorsomedial hypothalamic nucleus (DMH), paraventricular nucleus (PVN), adenohypophysis, and in the ovarian oocytes, interstitium, and granulosa cells across all developmental stages in female mice. Nagk knockdown in GT1-7 cells decreased the transcriptional level of Gnrh, Kiss1, Gpr54, Igf1 and Mapk14 mRNA and cell proliferation but increased the level of β-catenin mRNA and cell apoptosis, while reducing GnRH secretion. Following ICV injection, Nagk gene knockdown mice exhibited delayed the timing of vaginal opening (VO) and reduced hypothalamic levels of Gnrh, Kiss1, Gpr54, Igf1, Mapk14, and β-catenin mRNA. Additionally, serum concentrations of E in Nagk gene knockdown mice were significantly lower compared to the control group. These findings indicate that Nagk regulates the expression of Gnrh and Kiss1 mRNA in GT1-7 cells, affects hypothalamus Gnrh mRNA levels and serum E concentration, and that its knockdown can delay puberty onset in female mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2024.10.023DOI Listing

Publication Analysis

Top Keywords

female mice
24
nagk mrna
16
nagk
13
puberty female
12
developmental stages
12
infant prepuberty
12
nagk gene
12
gene knockdown
12
mrna levels
12
gnrh kiss1
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!