Background: Gastric intestinal metaplasia (GIM) is a crucial stage in the progression of gastric cancer. Huangqi Jianzhong decoction (HQJZ) has emerged as a leading therapeutic strategy for treating GIM patients with cold intolerance in traditional Chinese medicine clinics, but the detailed mechanism remains poorly understood.
Objective: The present study aimed to elucidate the molecular mechanism by which HQJZ alleviates GIM in a rat model on the basis of the gut microbiota‒thyroid axis.
Methods: A GIM rat model was established by administering cold salicylic acid and sodium deoxycholate (SDC) for 12 weeks, followed by gavage treatment with HQJZ for an additional four weeks. Lianpu Yin (LPY) was used as a comparison formula. The cold tolerance characteristics of GIM rats were evaluated using cold tolerance and temperature‒tropism experiment experiments. Thyroid pathological changes were evaluated with HE staining, and thyroid function was measured via quantification of T3 and T4 levels with ELISA. The gut microbiota was analyzed using 16S rRNA gene sequencing, and fecal butyric acid and serum metabolites were quantified utilizing metabolomics. The key molecular mechanism was verified in the Nthy-ori 3-1 cell model.
Results: HQJZ, but not LPY, significantly improved gastric mucosa and thyroid tissue lesions in GIM rats, increased the serum levels of the thyroid hormones T3 and T4, and enhanced cold tolerance. HQJZ treatment promoted the enrichment of fecal butyrate-producing bacteria, specifically the bacteria Allobaculum and Bifidobacterium, resulting in a marked increase in fecal butyric acid concentrations. HQJZ treatment significantly diminished the levels of mitochondrial damage-related serum metabolites, including p-cresol sulfate and indoxyl sulfate. Mechanistically, in vivo investigations further demonstrated that butyric acid not only improved thyroid tissue lesions but also restored the fecal microbiota structure, as well as low-temperature tropism, in GIM rats. Furthermore, butyrate diminished the mitochondrial damage induced by SDC in these cells, as evidenced by decreased reactive oxygen species levels and increased ATP production and mitochondrial membrane potential. Importantly, in vitro studies revealed that butyrate protected against SDC-induced injury in Nthy-ori 3-1 cells through the upregulation of TG, TPO, and TSHR expression.
Conclusions: HQJZ promotes cold tolerance and improves thyroid function in GIM rats by enriching gut butyrate-producing bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.156174 | DOI Listing |
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice.
View Article and Find Full Text PDFWater Res
December 2024
Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:
Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.
View Article and Find Full Text PDFPLoS One
January 2025
Polish Academy of Sciences, Institute of Plant Genetics, Poznan, Poland.
The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agriculture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
Unraveling key ABA pathways, including OsWRKY71-OsABA8ox1 and OsbZIP73-OsNCED5, provides valuable insights for improving cold tolerance in rice breeding for cold-prone regions. Cold stress limits rice (Oryza sativa L.) production in cooler climates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!