. Endovascular brain-computer interfaces (eBCIs) offer a minimally invasive way to connect the brain to external devices, merging neuroscience, engineering, and medical technology. Currently, solutions for endovascular electrocorticography (ECoG) include a stent in the brain with sensing electrodes, a chest implant to accommodate electronic components to provide power and data telemetry, and a long (tens of centimeters) cable travel through vessels with a set of wires in between. Removing this long cable is the key to the clinical viability of eBCIS as it carries risks and limitations, especially for patients with fragile vasculature.. This work introduces a wireless and leadless telemetry and power transfer solution for ECoG. The proposed solution includes an optical telemetry module and a focused ultrasound (FUS) power transfer system. The proposed system can be miniaturised to fit in an endovascular stent, removing the need for long, intrusive cables.. The optical telemetry achieves data transmission speeds of over 2 Mbit/s, capable of supporting 41 ECoG channels at a 2 kHz sampling rate with 24-bit resolution. The FUS power transfer system delivers up to 10 mW of power to the implant through the scalp(6 mm), skull(10 mm), and subdural space(5 mm), adhering to safety limits. Testing on bovine tissue (10 mm thick bone, 7 mm thick skin) confirmed the system's efficacy.. This leadless and wireless solution eliminates the need for long cables and auxiliary implants, potentially reducing complications and enhancing the clinical applicability of eBCIs. The proposed system represents a step forward in enabling safer and more effective ECoG for a broader range of patients.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ad8dfeDOI Listing

Publication Analysis

Top Keywords

power transfer
16
solutions endovascular
8
endovascular electrocorticography
8
removing long
8
optical telemetry
8
fus power
8
transfer system
8
proposed system
8
telemetry
5
power
5

Similar Publications

Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations.

View Article and Find Full Text PDF

A theoretical comparison of different third component content in ternary organic solar cells.

Phys Chem Chem Phys

January 2025

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.

Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations.

View Article and Find Full Text PDF

Two-dimensional (2D) PtSe has attracted significant attention in recent years owing to its exceptional optoelectronic properties. Currently, the contact interface of the PtSe/bulk 2D-three-dimensional (3D) p-n heterojunction exhibits numerous defects. Moreover, the n-type bulk materials serve as a carrier transport layer, resulting in serious recombination losses and deterioration of device stability.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) phosphor-converted light-emitting diode (LED) technology holds promise for advancing broadband light sources. Despite the potential, limited research has delved into the energy transfer mechanism from sharp-line to broadband emission in SWIR phosphors, which remains underexplored. Herein, we demonstrate bright SWIR phosphors achieved through Cr/Ni energy transfer in LiGaAl O.

View Article and Find Full Text PDF

The widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS2-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g-1 at 0.5 A g-1 and 320 mAh g-1 at 20 A g-1 over 400 cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!