A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of Remote-Controllable Diels-Alder Platform on Magnetic Nanoparticles via Layer-by-Layer Assembly for AC Magnetic Field-Triggered Drug Release. | LitMetric

Diels-Alder chemistry was exploited to develop a remote-controllable drug release platform on magnetic nanoparticles (MNPs). For this purpose, MNPs were decorated with anionic poly(styrenesulfonic acid--furfuryl methacrylate) (poly(SS--FMA)) and cationic poly(allylamine hydrochloride) by layer-by-layer assembly. The decorated MNPs successfully underwent DA reaction to produce covalent bonding between FMA (diene) and maleimide (dienophile)-terminated model drug. Thermal treatment above 80 °C caused the retro Diels-Alder reaction (rDA) between FMA and the drug, resulting in drug release. The retro DA could be also achieved by applying an alternating-current (AC) magnetic field to the decorated MNPs. This could spatially limit the heat generation around MNP without heating entire system. Drug release could be also accelerated with the irradiation time when a threshold temperature was met or exceeded the required energy for rDA reaction. Our results highlight the potential of DA chemistry as a new strategy to provide a remote controllable drug release platform for improving the therapeutic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02998DOI Listing

Publication Analysis

Top Keywords

drug release
20
platform magnetic
8
magnetic nanoparticles
8
layer-by-layer assembly
8
release platform
8
decorated mnps
8
drug
7
release
5
design remote-controllable
4
remote-controllable diels-alder
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!