Rational design of efficient and non-noble metal bifunctional catalysts for alkaline overall water splitting (OWS) electrochemical reactions is of top priority in the development of hydrogen-based energy. Constructing catalysts with unique structures to optimize the intrinsic activity is a promising strategy. In this work, a newly developed NiCoMo-BTC-15h catalyst consisting of Ni nanoparticles enriched on the surface along with a core-shell porous structure is prepared via a hydrothermal process. Due to the unique composition and Ni-enriched core-shell structure, the NiCoMo-BTC-15h catalyst exhibits enhanced electrocatalytic properties for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. Under the dual tuning and intermetallic phase, the NiCoMo-BTC-15h catalyst deliver a lower overpotential of 151 mV and ≈ 136 mV exceeding commercial catalysts for OER and HER. When the NiCoMo-BTC-15h is used as bifunctional catalyst for OWS in a two-electrode alkaline electrolyzer, a cell voltage of 1.62 V is required to drive 10 mA·cm comparable to that of commercial Pt/C and RuO catalysts. This work proposes a potential strategy for optimizing the electrocatalytic performance of non-noble metal catalysts for OWS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407907 | DOI Listing |
Chemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China.
Electrochemical nitrate reduction to ammonia (NORR) is promising to not only tackle environmental issues caused by nitrate but also produce ammonia at room temperatures. However, two critical challenges are the lack of effective electrocatalysts and the understanding of related reaction mechanisms. To overcome these challenges, we employed first-principles calculations to thoroughly study the performance and mechanisms of triple-atom catalysts (TACs) composed of transition metals (including 27 homonuclear TACs and 4 non-noble bimetallic TACs) anchored on N-doped carbon (NC).
View Article and Find Full Text PDFLangmuir
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!