Cyanogel-Transformed Porous Palladium and Iron Framework Intermixed with rGO for Wearable Hydrogen Sensing.

Small

Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology and College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China.

Published: January 2025

Wearable hydrogen (H) sensing is necessary to monitor the H leakage in its transportation and storage, of which ppm-concentration detection limit and fast response at room temperature are highly desired. Here, a wearable H sensing working at room temperature is developed with palladium and iron framework intermixed with reduced graphene oxide (rGO//Pd-Fe FW), which is synthesized by combined Pd-Fe cyanogel immobilized with graphene oxide as precursor and in situ reduction. As-prepared rGO//Pd-Fe FW is observed with porous FW structure composed of interconnected Pd-Fe nanoparticles, in which rGO is evenly intermixed. Beneficially, rGO//Pd-Fe FW exhibits 2 ppm low detection limit and 2 s fast response (1 v/v% H) at room temperature. Such excellent H sensing performance may be attributed to the synergistic effect of the optimized Pd-Fe FW's catalytic activity, boosted electron transfers between Pd hydride and rGO, and enriched adsorption sites over porous FW's surface. Practically, the perceptron learning algorithm combined with principal component analysis is conducted to identify the H leakage, and the wearable H sensing devices are built by integrating rGO//Pd-Fe FW over the paper and flexible printed circuit board with reliable sensing responses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202408117DOI Listing

Publication Analysis

Top Keywords

room temperature
12
palladium iron
8
iron framework
8
framework intermixed
8
wearable hydrogen
8
hydrogen sensing
8
detection limit
8
limit fast
8
fast response
8
wearable sensing
8

Similar Publications

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Background: Except host and environmental factors influencing individual human cytokine responses, pre-analytical handling procedures and detection methods also affect cytokine levels.

Methods: In this study, we used cytometric bead array (CBA) and chemiluminescence (ECL). These two methods were used to test serum and plasma samples from 50 healthy adult volunteers and 50 rheumatoid arthritis (RA) patients' cytokine levels.

View Article and Find Full Text PDF

Low Temperature Emissive Cyclometalated Cobalt(III) Complexes.

Inorg Chem

January 2025

Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.

A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.

View Article and Find Full Text PDF

The dynamic response of heterogeneous catalytic materials to their environment opens a wide variety of possible surface states which may have increased catalytic activity. In this work, we find that it is possible to generate a surface state with increased catalytic activity over metallic 2nm Pt nanoparticles by performing a thermal treatment of the CO*-covered Pt catalyst. This state is characterised by its ability to oxidise CO to CO2 at room temperature.

View Article and Find Full Text PDF

The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!