Energy metabolism of chimeric antigen receptor-T cells (CAR-T) activation in humans remains unexplored. As a glycolytic activity surrogate, we investigated the dynamics of peripheral blood (PB) lactate in the first weeks post-CAR-T infusion. In 17 patients treated with CD28 harbording anti-CD19 CAR-T for relapsed/refractory non-Hodgkin lymphomas, PB lactate levels increased following CAR-T infusion. Elevated lactate levels correlated with longer CAR-T persistence and higher CD8+/CD4+ ratio. Peripheral blood lactate kinetics may reflect immune cells activation and be useful for bedside monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1111/eci.14342DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744912PMC

Publication Analysis

Top Keywords

glycolytic activity
8
anti-cd19 car-t
8
peripheral blood
8
blood lactate
8
lactate levels
8
car-t
5
activity anti-cd19
4
car-t cell
4
cell infusion
4
infusion non-hodgkin
4

Similar Publications

Introduction: COVID-19 severity and high in-hospital mortality are often associated with severe hypoxemia, hyperlactatemia, and acidosis, yet the key players driving this association remain unclear. It is generally assumed that organ damage causes toxic acidosis, but since neutrophil numbers in severe COVID-19 can exceed 80% of the total circulating leukocytes, we asked if metabolic acidosis mediated by the glycolytic neutrophils is associated with lung damage and impaired oxygen delivery in critically ill patients.

Methods: Based on prospective mortality outcome, critically ill COVID-19 patients were divided into ICU- survivors and ICU-non-survivors.

View Article and Find Full Text PDF

Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.

View Article and Find Full Text PDF

Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines.

View Article and Find Full Text PDF

UBE2Q2 promotes tumor progression and glycolysis of hepatocellular carcinoma through NF-κB/HIF1α signal pathway.

Cell Oncol (Dordr)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.

Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.

View Article and Find Full Text PDF

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!