A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. | LitMetric

Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties.

J Nanobiotechnology

Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.

Published: November 2024

Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531169PMC
http://dx.doi.org/10.1186/s12951-024-02930-6DOI Listing

Publication Analysis

Top Keywords

physiochemical properties
12
cells
9
orally administered
8
administered nanocarriers
8
bidirectional interactions
8
goblet cells
8
intestinal epithelial
8
epithelial cells
8
immune cells
8
cells mucosa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!