Objective: The aim was to investigate the relationship between metabolic indices and abnormal bone mass (ABM), analyse the association between osteoprotegerin (OPG) gene mutations and ABM, and explore the interaction effect of type 2 diabetes mellitus (T2DM) and OPG gene mutations on bone mineral density (BMD) in postmenopausal women to provide a new supplementary index and a reliable basis for the early identification of osteoporosis (OP) in postmenopausal women in the clinical setting.

Methods: Postmenopausal women hospitalized within the Department of Endocrinology of the First Affiliated Sanatorium of Shihezi University from June 2021 to March 2023 were retrospectively analysed, and the bone mineral density of lumbar vertebrae 1-4 (BMD (L1-4)) of the studied subjects was measured once via twin-energy X-ray absorptiometry. The studied subjects were divided into a normal bone mass (NBM) group and an ABM group according to their bone mineral density, and the general data of the studied subjects were recorded once. Blood biochemical indices were determined, and genotyping of the rs4355801 locus of the OPG gene was performed. Differences in the overall data and biochemical indices of the two groups were evaluated via the rank-sum test, and the relationship between blood glucose levels and mutations of the rs4355801 locus of the OPG gene and ABM or BMD (L1-4) was evaluated via binary logistic regression analysis or linear regression analysis. A bootstrap test was performed to test whether uric acid (UA) levels mediate the association between blood glucose levels and BMD (L1-4). Simple effect analysis was performed to analyse the interaction between T2DM and mutations at the rs4355801 locus of the OPG gene on BMD (L1-4).

Results: ① After adjusting for confounding factors, the risk of ABM increased by 50% (95% CI 21-85%) for each unit increase in fasting plasma glucose (FPG) levels and 31% (95% CI 2-69%) for each unit increase in glycosylated haemoglobin (HbA1c) levels (both P < 0.05). FPG levels were negatively correlated with BMD (L1-4) (both P < 0.05), and uric acid in blood sugar and BMD (L1-4) played a significant mediating role in the model; this mediation accounted for 21% of the variance. ② After adjusting for confounding factors, women with the mutant genotypes GA and GG + GA of the OPG gene rs4355801 locus had a lower risk of ABM than did those with the wild-type genotype AA (OR = 0.71, 95% CI = 0.52-1.00; OR = 0.51, 95% CI = 0.28-0.92, P < 0.05). The mutant genotypes GG, GA and GG + GA were positively correlated with BMD (L1-4) (all P < 0.05). The interaction between T2DM and mutations in the OPG gene rs4355801 locus had an effect on BMD (L1-4), and this site mutation weakened the increase in blood glucose levels and led to an increase in the risk of ABM (P < 0.05).

Conclusion: Elevated blood glucose levels in postmenopausal women were associated with an increased risk of ABM, and UA played a mediating role in the relationship FPG levels and BMD (L1-4), accounting for 21% of the variance. Mutations at the rs4355801 locus of the OPG gene were associated with a reduced risk of ABM in postmenopausal women. The interaction between T2DM and mutations at the rs4355801 locus of the OPG gene in postmenopausal women affects BMD (L1-4), and mutations at this locus attenuate the increased risk of ABM due to elevated blood glucose levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529261PMC
http://dx.doi.org/10.1186/s13018-024-05162-4DOI Listing

Publication Analysis

Top Keywords

opg gene
24
postmenopausal women
16
gene mutations
12
bone mass
12
bone mineral
12
mineral density
12
bmd l1-4
12
studied subjects
12
rs4355801 locus
12
locus opg
12

Similar Publications

Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice.

Pharmaceuticals (Basel)

December 2024

Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China.

Type 2 diabetes and weight loss are associated with detrimental skeletal health. Incretin-based therapies (GLP-1 receptor agonists, and dual GIP/GLP-1 receptor agonists) are used clinically to treat diabetes and obesity. The potential effects of semaglutide and tirzepatide on bone metabolism in type 2 diabetic mice remain uncertain.

View Article and Find Full Text PDF

In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified.

View Article and Find Full Text PDF

Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on orthodontic tooth movement (OTM) remains poorly understood.

View Article and Find Full Text PDF

The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer its potential applications in this medical field. First, a review of the literature confirmed the presence of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells.

View Article and Find Full Text PDF

Perfluorooctanoic acid and its alternatives disrupt the osteogenesis and osteoclastogenesis balance: Evidence from the effects on cell differentiation process.

Sci Total Environ

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:

In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!