Background: Flock-level prevalence and characterization of Mycoplasma ovipneumoniae is determined almost exclusively using nasal swabbing followed by molecular detection with either quantitative PCR or multi-locus sequence typing. However, the diagnostic performance and efficiency of swabbing the nasal passage compared to other anatomical locations has not been determined within sheep populations. The goal of this research was to assess the diagnostic capability of nasopharyngeal swabs in comparison to nasal swabs for the detection of Mycoplasma ovipneumoniae.
Results: Nasal and nasopharyngeal swabs were collected during a controlled exposure study of domestic sheep with Mycoplasma ovipneumoniae. Both swab types were then analyzed via conventional and quantitative PCR. This dataset showed that the use of nasopharyngeal swabs in lieu of nasal swabs resulted in higher sensitivity, reduced inhibition during quantitative PCR, and higher bacterial copy numbers per swab. Moreover, it was demonstrated that diagnostic sensitivity could be further increased during quantitative PCR via ten-fold dilution of the extracted DNA. To confirm these observations in naturally infected animals, we conducted a field study employing a production flock of domestic sheep using both nasal and nasopharyngeal swabbing techniques. Extracted DNA was assessed using the same molecular techniques, where detection of Mycoplasma ovipneumoniae was confirmed by sequencing of either the rpoB or 16S rRNA gene. Similar improvements were observed for nasopharyngeal swabs and template treatment methods within the naturally infected flock.
Conclusions: Results demonstrate increased diagnostic sensitivity and specificity when sampling with nasopharyngeal swabs as compared to nasal swabs. Therefore, alternate field-testing strategies employing nasopharyngeal swabs should be considered for diagnosis of the presence of M. ovipneumoniae. Importantly, sample treatment following acquisition was found to affect the sensitivity of quantitative PCR, where dilution of eluted DNA template doubled the calculated sensitivity. This demonstrates that, in addition to anatomical location, the presence of inhibitory components in swab extracts also strongly influences diagnostic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529185 | PMC |
http://dx.doi.org/10.1186/s12917-024-04342-y | DOI Listing |
Vet Res Forum
December 2024
MD Student, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster.
View Article and Find Full Text PDFCureus
December 2024
Pediatric Intensive Care Unit, King Fahad Medical City, Riyadh, SAU.
Background: High-flow nasal cannula (HFNC) therapy has developed as a valuable tool for respiratory support in pediatric critical care. It offers an intermediate level of support between traditional low-flow oxygen and non-invasive ventilation (NIV). Studies suggest its effectiveness in improving oxygen delivery, work of breathing, and secretion clearance.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
Background: Several respiratory viruses, including Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), suppress nuclear factor-E2-related factor-2 (NRF2) antioxidant response, generating oxidative stress conditions to its advantage. NRF2 has also been reported to regulate the innate immune response through the inhibition of the interferon (IFN) pathway. However, its modulation in younger individuals and its correlation with the IFN response remain to be elucidated.
View Article and Find Full Text PDFVirol J
January 2025
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.
Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.
Influenza Other Respir Viruses
January 2025
Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
Background: The global pandemic caused by SARS-CoV-2 has resulted in millions of people experiencing long COVID condition, a range of persistent symptoms following the acute phase, with an estimated prevalence of 27%-64%.
Materials And Methods: To understand its pathophysiology, we conducted a longitudinal study on viral load and cytokine dynamics in individuals with confirmed SARS-CoV-2 infection. We used reverse transcriptase droplet digital PCR to quantify viral RNA from nasopharyngeal swabs and employed multiplex technology to measure plasma cytokine levels in a cohort of people with SARS-CoV-2 infection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!