Periapical periodontitis may manifest as a radiographic lesion radiographically. Periapical lesions are amongst the most common dental pathologies that present as periapical radiolucencies on panoramic radiographs. The objective of this research is to assess the diagnostic accuracy of an artificial intelligence (AI) model based on U²-Net architecture in the detection of periapical lesions on dental panoramic radiographs and to determine whether they can be useful in aiding clinicians with diagnosis of periapical lesions and improving their clinical workflow. 400 panoramic radiographs that included at least one periapical radiolucency were selected retrospectively. 780 periapical radiolucencies in these anonymized radiographs were manually labeled by two independent examiners. These radiographs were later used to train the AI model based on U²-Net architecture trained using a deep supervision algorithm. An AI model based on the U²-Net architecture was implemented. The model achieved a dice score of 0.8 on the validation set and precision, recall, and F1-score of 0.82, 0.77, and 0.8 respectively on the test set. This study has shown that an AI model based on U²-Net architecture can accurately diagnose periapical lesions on panoramic radiographs. The research provides evidence that AI-based models have promising applications as adjunct tools for dentists in diagnosing periapical radiolucencies and procedure planning. Further studies with larger data sets would be required to improve the diagnostic accuracy of AI-based detection models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529158 | PMC |
http://dx.doi.org/10.1186/s12903-024-05126-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!